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Abstract
We consider the issue of Bayesian prediction of the unobservable random effects, And
we characterize priors that ensure approximate frequentist validity of posterior quantiles of
unobservable random effects. Finally we show that the probability matching criteria for
prediction of unobservable random effects in one-way random ANOVA model.

1. Introduction

Consider random variables Y-, Y, and &, -, &,, with their joint distribution indexed

by an unknown parameter 6= (6,,-,4,)7, such that

(a) given &, &, conditionally ¥,,--,Y, are independent and Y, has a dersity
Ayiéi 0);

(b) marginally &, &, are independent and identically distributed (iid), each with density
g(.;0);

(© Y,,,Y, are observable but &, -, &, are unobservable and interest lies in
predicting the random effects &; on the basis of Y,--, Y,

The above setup is motivated by ANOVA models with random effects though it can arise

in other situations too. Thus in the one-way random ANOVA setting with » classes and

k(=2) observations Y, -, Y, in the sh class (1<i<x), we have the model

Y;=0,+&+e; (1<<k, 1<i<n), (1.D)

where 6, is the unknown general mean, &; is the unobservable random effect associated with

the th class and e, is random error. As usual, suppose

(i) &,-,&, are iid, each normal with mean zero and unknown variance 6,,
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(i) the {e;} are iid, each normal with mean zero and unknown variance s,

(iii) the {&;} and the {e;} are independent.

Write YV,=(Y,,,Ys . Then the setup of the previous paragraph arises. Here
Ay)&; 6) tepresents the f-variate normal density with mean vector (4,+ &)1, and covariance
matrix 6,7, and g(.;6) stands for the univariate normal density with mean zero and variance
6,. We write [, for the identity matrix of order % and 1, for the £X1 vector with each
element unity.

Returning to the general setup as described in the beginning of this section, we consider
the issue of Bayesian prediction of the unobservable random effect &, on the basis of
Y, -, Y, using a prior density x(.) on 4. Specifically, as in the ANOVA setting stated
above, we consider scalar &, but allow Y,,-,Y, to be possibly vector-valued, and
characterize prior x(.) which ensure approximate frequentist validity, as »—, of the
posterior quantiles of & Prior of this kind are known as probability matching priors. As noted
in Tibshirani (1989), such priors are in a sense noninformative; moreover, they provide a
means for getting accurate frequentist confidence or predictive regions that enjoy a Bayesian
interpretation as well.

Probability matching priors have been studied extensively in the context of estimation of
parameters; see Ghosh and Mukerjee (1998) and Mukerjee and Reid (1999) for references. The
exploration of such priors for prediction, rather than estimation, is on the hand of much recent
origin. Datta et al., (2000); initiated work in this area considering the prediction of a future
observation in a sequence of iid random variables. Datta and Mukerjee (2003) reported further
results for the situation where, with an independent random variable X and a dependent
random variable Y, interest lies in predicting Y in a current pair on the basis of past pairs
of observations on both X and Y and knowledge of X in the current pair. None of these
settings, however, covers the situation considered in the present article. For example, here the
random effect £; is unobservable for each 7, whereas is Datta and Mukerjee (2003) both X
and Y are known in the past of observations. Because of this reason, we first indicate a
characterization for probability matching priors in the present setup in Section 2. The
characterization is then applied to one-way ANOVA model with random effects in Section 3.

2. Probability matching conditions

We continue with the general setup described in the first paragraph of Section 1. Note
that marginally Y,,--, Y, are iid with common density
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Wyi; 0)= f_woof(ylléi, 0)e(&; O)dé;. @.1)

Let #(&ly,, §) be the conditional density of £; given Y, (1<i<#n). Along the line of
Ghosh and Mukerjee (1993), we work essentially under the assumptions of Johnson (1970) and
also need the Edgeworth assumptions of Bickel and Ghosh (1990). The parameter space for ¢
is an open set in R’. The per observation (i.e., per Y, as given by (2.1)) Fisher information
matrix () is assumed to be positive definite for all 9. We work with a prior density =t .)
that is positive and thrice continuously differentiable. Formal expansions for the posterior, as
used here, are valid for sample points in a set S with P,-probability 1+ o(#~') uniformly
over compact subsets of g; cf. Bickel and Ghosh (1990).

Let A(&)=n"" Zl log ¢(y;6) and 9 be the maximum likelihood estimate of @ based

on y,,-,y, where y,; is the realized value of ¥, With D;=d/ds,, let

C,'y=_{D,'D,/1(l9)} 4= 37 ajﬁ:{DjDrDSA(e)} P 71',‘( &= D,'”( 19),
h/‘(éilyi’ )= Djh(éz{yi; 0, hjr(Eilyz'y 9) = DjDrh(Ez‘lyir 8).

The matrix C=((c;)) is positive definite over S. Let C~'=((c").

Let 7{(5,»|d) be the posterior predictive density of &, given the data d=(y,-,v.),
under the prior 7(.). One can check that 7r(§,-|d) is the expectation of #(£}y,, 6) with
reference to the posterior density of # given & under #(.). Now, an expansion for the
posterior density of #%Y%(§— @) is available in Ghosh and Mukerjee (1993). Using tais
together with an expansion for A(&)y,, §) about /é, one gets after some algebra

27 9)

7 6)

TEND=(Ely, D)+ glﬁ[cs’( ajst }h,-(é,-ly,-, D)+ halEly; O |+ o(n7H. 22)

In (2.2) and elsewhere we follow the summation convention with all implicit sums ranging
from 1 to p. Eq. (2.2) resembles Eq. (2.1) of Datta et al., (2000) although our setting is quite
different from theirs. This, however, enables us to follow the line of Datta et al.,(2000), via
the use of a shrinkage argument popular in Bayesian asymptotics, to obtain the probability
matching condition for the present problem. To save space, we omit the details and present
only the final result after stating the requisite notation.

Let {(6)) '=((I"). For 0<a<l, let g(6,a,v,) be such that
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S W& 0= a @3
and define
vis.a=Ef [, el 0de) 4

Then it can be seen that a prior #(.) is probability matching in the present setup, in the

sense of ensuring frequentist validity of the posterior quantiles of £; with margin of error

o(n™") if and only if it satisfies the partial differential equation
DAI*V{6, Dn(6)} =0. 25)

Eq. (2.5) again formally resembles the corresponding matching condition in Datta and
Mukerjee (2003). However, this similarity is superficial since the meaning of our notation is
different from theirs. For example, in (2.5) I refers to the per observation information matrix
based on Y alone (vide (2.1)) whereas in their setup it refers to the per observationl pair
information matrix with both the independent and dependent random variables included in the
pair. Moreover, as seen in the rest of the present article, (2.5) facilitates new applications that
could not be handled by the previously available results.

3. Example: application to one-way ANOVA model

We now consider ANOVA models with random effects that were the main motivation for
considering the present problem. We first consider the one-way random ANOVA model (1.1)
with fixed %, the notation being as in the second paragraph of the Introduction. Then

marginally Y,,--, Y, are iid, each f-variate normal with mean vector 6,1, and covariance

matrix ,],+ 6;I,, where J,=1,17. Hence it can be seen that

= (kOy+ 0)/ky IP=1P=0, [*=2{(k,+ 05)*+ (k—1) ' 65}/,
P =—263{k—1)}, I*=26}/(k—1). G

Here #(&}y,, 6) is the univariate normal density with mean x(y; ) and variance M(6),

where
w(y;, ) ={k6,/ (RO, + 0} v, — 0)), M(6)=0,05](kO,+ 65) (3.2)

and “y;=(yy+ - +y;)/k Hence, as in Example 2, a(0,a,v) = u(vj, 0+ z{M(6)}, and
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(2.8) holds. Hence by (2.4) and (3.2), V,(4,a) is free from §,, and

Vy(6, a) =% 2¢(2)05/{0,(k6,+ 05)}, V3(6, 0)= % 2¢(2)0,/{ 05k, + 63)} (3.3)

We consider a natural class of priors of the form
(9) = 0503k, + 65)’, (3.4)

where 7, s and ¢ are any real number. By (3.1), (3.3) and the fact that V,(6,a) is free
from 4, it can be seen after considerable algebra that the unique prior of the form (3.4) that
satisfies the matching condition (2.5) is 7(6) ={8,/65}(k0y+ 6;) ®~?* "D 1t can also be
checked that this prior guarantees the propriety of the posterior. As in Example 2, this prior is
different form probability matching priors for interval estimation of @, or @, (vide Peers,
1965). In addition, it is different from the prior {8(k6,+ 6;)} !, which also has the form

(34) and uniquely ensures approximate frequentist validity of simultaneous Bayesian inference
on 6, 6,/0; and @; (vide Datta, 1996). This again shows that the matching criteria for

prediction of unobservable random effects and estimation of parameters can yield different
results.
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