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Abstract

Consider a multitype queue where queued customers are served in their order of
arrival at a rate which depends on the customer type. Here we calculate the sharp
asymptotics of the probability the total number of customers in the queue reaches
a high level before emptying. The natural state space to describe this queue is a
tree whose branches increase in length as the number of customers in the queue
grows. Consequently it is difficult to prove a large deviation principle. Moreover,
since service rates depend on the customer type the stationary distribution is not
of product form so there is no simple expression for the stationary distribution.
Instead, we use a change of measure technique which increases the arrival rate of
customers and decreases the departure rate thus making large deviations common.
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1 Introduction

In this paper, we derive an exact asymptotic expression for a large deviation of the
total number of customers in a multiclass FIFO queue. Suppose customers are of
different classes in a set C. We assume class ¢ customers arrive independently at the
server according to a Poisson process with rate A.. We assume a class ¢ customer at
the head of line is served at rate p.. Without loss of generality, assume

Z(/\c + pe) = 1.
ceC

A state of the queue is given by a branch z in a tree representing the classes of
customers in the queue. z = (xg,21,...2,—1) and |z| = n if there are n customers in
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the queue and the head of line customer has class zg and the next in line is 1 and so
on. Let ¢ denote the state of the empty queue.

The M|G|1 multiclass queue with FIFO service is quasi-reversible ( Baskett et al.
1975; Walrand 1988) if each class served is at the same rate y. Our queue is not
quasi-reversible because of fact that the service rate depends on the customer class.
Consequently the stationary distribution II is not of product form and has no simple
representation. There do exist representations of the steady state using transform
techniques. See the recent paper by Choi et al.(2000) for a detailed bibliography
(Choi et al.(2000) even allows feedback). Our goal here is to describe the asymptotics
of I(z) for |z| = £ as £ — oo as well as the mean hitting time and hitting distribution
when the number of customers reaches a high level £.

We can view this queue as one where the customer type is only determined at
the moment service starts. Then the system is an M|G|1 queue with an arrival rate
A =3 .cc Ac- The service time density and the associated generating function are

Lhe
Jte — 6

A Ac
g(s) = Z Tcuc exp(—pes) for s > 0, and ¢g(0) = Z X
ceC ceC
Such an M|G|1 queue is stable if and only if p = Amg < 1 where mg = Y o Ae/(Asic)
is the mean service time. It follows the queue is stable if and only if p = Y~ o Ac/ e <
1.
In fact from Corollary 1 of McDonald and Théberge (2000) we have the asymptotics
of the number of customers in an M|G|1 queue. As £ — oo,

O({z:|z|=£}) ~ Coe (1.1)
where T solves ¢g(A(e! — 1)) = exp(T) and
(eF = 1)
(AP (Al = 1)) = 1)
We would, however, like more detailed information about the queue and the trajectory
when there are £ customers in the queue for the first time.
For any point £ = (%o,...,Tn_1) let Ne(z) = #{zx = ¢,k > 0}: thus Nc(z)

counts the number of customers of class ¢ waiting in the queue or currently being
served. Define H at the empty queue to be 1 and for x representing the content of a

non-empty queue,
Hz) =] (e%'NC(”)) .
ceC

Co = (1-xmg) (1.2)

Note that H is harmonic on {z : |z| > 0} as long as for all a € C

Z A€ + pge e = Z Ae + o

ceC ceC
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or equivalently, if

Z A€’ + pge” e + Z pe = 1.

ceC c#a

A non-trivial solution for the =, exists. In fact, by taking differences of the above
constraint we find that e~ = (e " uy + pg — 1)/ pta- Thus solving for the ~, reduces
to solving for 7y; in the following manner.

0 = 6’71)\1 + Z e’Yd)\d + Z e — 1] + e M 1
d#1 d#1

= (@ =DM+ [ D€ =D |+ =D
d£1

= (1—e M) (Z ( Ad ) + (e =y
d

e — 1)uy + pg

Ad
1 = . 1.3
2 D -

Solving this last equality provides 71, and then the other -, are obtained as above.
We can also interpret (1.3) as
1 = ﬁ (1.4)
g Hd
We investigate asymptotics of II by performing a change of measure associated
with this harmonic function H. If a class ¢ customer is being served at the head of
the queue, at the next transition of the twisted walk a class a customer arrives with
probability A, := Ase?* and the head-of-the-line (HOL) class c customer is served with
probability fi. := p.e Y. The twisted total customer arrival rate is A := Zdec Ad-
The twisted load of class ¢ customers is p, = Xc/ﬁc and the twisted total load is
p = .ccPe. This allows us to state the following multi-type version of (1.1).

Theorem 1.1 In the above notation,

e = X/,

_l=p X

and so
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As £ — oo,

7(l,0) =l1{{z : |z| =4, z0=0a}) ~ (%) Coe Tt (1.5)
a
Example 1 Take C = {1,2}, A1 = 0.1, A2 = 0.2, g1 = 0.3 and po = 0.4. Then mg =
2.78 and p = 5/6 < 1. The queue is stable and we can solve ¢c(A(el — 1)) = exp(T)
to obtain el ~ 1.1953 in (1.1). Solving for the twisted system yields eM =~ 1.243,
e”? ~ 1172, A ~ 01243, Xy ~ 0.2343, 7i; ~ 0.2414, iy ~ 0.3414, 5, ~ 0.515,
p2 ~ 0.686 and p ~ 1.201.

Note that in view of (1.4), summing (1.5) over a yields (1.1). Theorem 1.1 also
specifies the equilibrium distribution of clients at the head of the line similarly to
line (7.11) of McDonald(2004), which states the equilibrium composition (i.e. relative
numbers of each type of client) for the multiclass M/M/1 queue. We can provide a
complete analog to that result as well.

Lemma 1.2 II((a,z1,...%n 1)) = 7(n, a) [T}Z] '\f\"“ and TI(¢) = w(¢).

Since we have the asymptotics of 7(¢,a) we can summarize:

Corollary 1.3 Fiz k to be a positive integer and {(ag,...,ag). As £ — oo,
Ao\ Ty /A
O{z:|z|=¢ zi=a;i=0...k}) ~ (~—%) H (%) Coe 14 (1.6)
Hao /521

Let 7 denote the first £ > 0 that the multiclass queue reaches size £.

Theorem 1.4 For an M|G|1l queue let Po(Hy) denote the probability the queue size
grows from 0 to £ without returning first to 0, and let Eg1, denote the mean time for
the queue to reach level £. Then

—re,r 1 - Amg

r
PO(HZ) ~ € )‘(i)IG()‘(eF _ 1)) — 1(6 - 1)
and
re 1 A" =) -1 —1
Bore ~ ¢ Sima)® T e @ D

where pa(t) = [)° €“dG(z), mg is the mean of G and T is the unique solution to
bo(M(e" — 1)) = exp(T).
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If we apply Theorem 1.4 to the M|M |1 multiclass case with u, = p for all b, then

el = p/X. By substitution, .
Eng ~ erezu_—)\)g.

The time for a birth and death process with birth rate A and death rate p to reach
level £ can be solved exactly as in Ch. XIV.3 of Feller(1968),

Eory = Z“—f)\v((g)e —1)) - %
611@114—/\)5 +O(£)

The approximation error of Theorem 1.4 grows only linearly with £ in the M|M]|1 case.
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