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Tree~dependent component analysis (TCA) is a generalization of independent component analysis
(ICA), the goal of which is to model the multivariate data by a linear transformation of latent
variables, while latent variables fit by a tree-structured graphical model. In contrast to iICA, TCA
allows dependent structure of latent variables and also consider non-spanning trees (forests). In
this paper, we present a TCA-based method of clustering gene expression data. Empirical study
with yeast cell cycle-related data, yeast metabolic shift data, and yeast sporulation data, shows
that TCA is more suitable for gene clustering, compared to principal component analysis (PCA) as

well as ICA.

1. INTRODUCTION

Clustering genes expression data into biologically
relevant groups, is a valuable tool for finding
characteristic expression patterns of a cell and for
inferring functions of unknown genes [1]. On one
hand, classical clustering methods such as k-means,
hierarchical clustering, self-organizing map (SOM),
have widely been used in bioinformatics. On the
other- hand, linear latent variables models were
recently used in the task of gene clustering. The
underlying assumption in linear latent variable
models, is that gene expression profiles are
generated by a linear combination of linear modes
(corresponding to prototype biological processes)
with weights (encoding wvariables or factors)
determined by latent variables. Clustering gene
profiles can be carried out by investigating the
significance of latent variables and representative
biological functions directly come from linear modes
of latent variable models [2]. Tree-dependent
component analysis (TCA) is a generalization of ICA,
the goal of which is to seek a linear transform with
latent variables well-fitting by a tree-structured
graphical model, in contrast to ICA which restricts
latent variable to be statistically independent [3]. In
this paper, we present a method of gene clustering
based on TCA. We compare the performance of TCA
to PCA and ICA, for three yeast data sets,
evaluating the enrichment of clusters through the
statistical  significance of Gene Ontology (GO)

annotations [4].

2. LINEAR LATENT VARIABLE MODELS

Gene expression patterns measured in microarray
experiments, result from unknown generative
processes  contributed by  diverse  biological
processes such as the binding of transcription
factors and environmental change outside a cell [5].
Genome-wide gene expression involves a very
complex biological system and the characteristics of
biological processes is hidden to us. A promising
way to model such a generative process, is to
consider a linear latent variable model such as PCA
and ICA. The linear generative model assumes that a
gene profile z,€R™ (the elements of z, represent

the expression levels of gene ¢t at m samples or m
time points) is assumed to be generated by

z,=As,te, t=1,.,N, (1)

where A=la; + * * a,]ER™*™ contains linear
modes in its columns and s,€ER" is a latent variable
vector with each element sy associated with the

contribution of the linear mode a, to the gene profile

z,. The noise vector ¢,€R™ takes the uncertainty in
the model into account and it is assumed to be
statistically independent of s,. Then the linear
generative model (1) can be written in a compact
form:
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X=AS8, (2)

where X=[X, ] R™*" is the data matrix with each
element X, associated with the expression level of
gene t at sample i (or time i). The latent variable
matrix S€R™™¥ contains s, for t=1,..,N. Given a
data matrix X, latent variables § are determined by
S§= WX, where the linear transformation W is
estimated by a certain optimization method.
Depending on restrictions or assumptions on 4 and
S, various methods including PCA, ICA, and TCA
have been developed.

3. TCA

TCA is a generalization of ICA, where instead of
seeking a linear transformation W that makes
components {s;} independent (s, is the ith—-element
of s= Wz), it searches for a linear transform W
such that components (latent variables) {s;} well-fit
by a tree-structured graphical mode! {3]. in TCA, s,
are referred to as tree—dependent components. In
contrast to ICA, TCA allows the components s; to
be dependent and its dependency is captured by a
tree-structured graphical model. Thus, it is expected
that TCA will be more suitable for gene clustering
than ICA, since it is more realistic in seeking hidden
biological processes. Incorporating with a
non-spanning tree in TCA, allows us to model
inter-cluster independence, while providing a rich but
tractable model for intra-cluster dependence. This is
desirable for clustering since an exact graphical
model for clusters of variables would have no edges
between nodes that belong to different clusters and
would be fully connected within a cluster. In order
for non-spanning trees to be allowed, the prior term
(penaity term), (¢(T)=logp(7), was considered in
[3]. The objective function involves the calculation
of entropy, which requires the probability distribution
of s that is not available in advance. Several
empirical contrast functions were considered in [3].
These include: (1) kernel density estimation (KDE);
(2) Gram-Charlier expansion; (3) kernel generalized
variance;  (4) multivariate  Gaussian stationary
process—based entropy rate. A brief overview of TCA
is given below, and see [3] for more details.

4. PROPOSED METHOD FOR CLUSTERING

The procedures of TCA-based

summarized below.

clustering are

Algorithm Outline: TCA-Based Clustering

Step 1 [Preprocessing]l The gene expression data
matrix X is preprocessed such that each element is
associated with X;, =log,R, —log,G, where R, and
G, represent the red and green intensity of cDNA

bt
microarray, respectively. Genes whose profiles have
missing values more than 10% are discarded.
Missing values in X are filled in by applying the
KNNimpute (6], a method based on k-nearest
neighbors. The data matrix is centered such that
each row vector has zero mean. In the case of
high-dimensional data, PCA could be applied to
reduce the dimension, but it is not always
necessary.

Step 2 [Decomposition] We apply TCA algorithm to
the preprocessed data matrix to estimate the
demixing matrix W and the encoding variable matrix
S.

Step 3 [Gene clustering] In the case of ICA, row
vectors are statistically independent. Thus clustering
is carried out for each row vector of S (associated
with each linear mode that is the column vector of
A) In other words, for each row vector of S, genes

with  strong positive and negative values of
associated independent components, are grouped
into two clusters, each of which is related to

induced and repressed genes, respectively. On the
other hand, TCA reveals a dependency structure in
the row vectors of §. Hence, the row vectors of §
associated with a spanning tree undergo a weighted
sum. These resulting row vectors (the number of
these row vectors is equal to the number of
spanning trees in the forest) are used for grouping
genes into up-regulated and down-regulated genes.
Denote by C; the cluster associated with an isolated
spanning tree determined by TCA. The up-regulated
() and down-regulated (C?) genes are grouped
by the following rule:

(8)

the standard deviation of

denotes
2 llayl3sign(a,)S,,. where a, is the average of a
kEC,

where ¢

and . is the kth row vector of S In our
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experiment, we chose c=1.5.
5. NUMERICAL EXPERIMENTS

We used three publicly available gene expression
time series data sets, including yeast sporulation
(D1), metabolic shift (D2), and cell cycle-related
data (D3) [7,8]. We have developed a software
called GOComparator which calculates p values of
GO annotations and compares the two clustering
results visually by plotting the minimum p-values
shared in both. It is freely available at
htto.//home.postech.ac. kr/~blkimjk/software.htrml. We
compared the performance of TCA-based clustering
with PCA and ICA by using the three yeast datasets.
The method of clustering with the two algorithms is
very similar to TCA except that decomposition is
performed by PCA and ICA, respectively. In addition,
the “~weighted summation of tree-dependent
components in the gene clustering step is not done
as there are no clusters of hidden variables in the
two algorithms. We also compared TCA algorithms
with different empirical contrast functions: CUM,
KGV, KDE, and STAT. The TCA algorithm based on
Gaussian stationary process (STAT) outperforms the
others for each dataset. The performance of TCA
with a non—-spanning tree was better than that of a

spanning tree. The .comparison resuits of three
datasets are shown in Fig. 1. It confirms that
TCA-based clustering outperforms PCA and ICA

based-clustering. By applying PCA, we reduced the
number of hidden variables in PCA and ICA
based-clustering to the chosen number of clusters
of TCA. Because of the computational cost of TCA,
we reduced the dimension of the data vector to 10
by applying PCA for the dataset D3. For each
8log NV

N
genes.

dataset, the edge prior ¢}, was chosen to

where N is the total numbAer of

6. CONCLUSIONS

In this paper, we have presented a method of
TCA-based clustering for gene expression data.
Empirical comparison to PCA and ICA, with three
different yeast data sets, has shown that the
TCA-based clustering is more useful for grouping
genes into biologically relevant ciusters and for
finding underlying biological processes. The success
of TCA-based clustering has confirmed that a
tree—structured graph (a forest consisting of
Chow-Liu trees) for latent variables is a more
realistic and richer model for modelling hidden
biological processes.
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Fig.1. Comparison of TCA based clustering to PCA
and ICA on three yeast datasets. For each dataset,
TCA has more points above the diagonal, which
indicates that TCA has more significant GO
annotaions. (a),(b):D1, (c).(d):D2, (e),():03
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