2006 F}=HFEFEEUS] =F3F Vol 33, No. 1(A)

A Hybrid Approach on Matrix Multiplication

Department ot Computer Engineering, Hankuk Aviation University
Goyang City, Korea
{tolentinobel®, kimmk, chae}@hau.ac.kr

KISS Korea Computer Congress 2006

Maribel Tolentino®, Myungkyu Kim, Soo-Hoan Chae
Hankuk Aviation University

Abstract

Matrix multiplication is an important problem in lin¢ar algebra, its main significance for combinatorial algorithms is its equivalence

1o a variety of other problems, such as transitive closure and reduction, solving linear systems, and matrix inversion.

Thus the

development of high-performance matrix multiplication implies faster algorithms for all of these problems. In this paper, we present a
quantitative comparison of the theoretical and empirical performance of key matrix multiplication algorithms and use our analysis 10
develop a faster algorithm. We propose a Hybrid approach on Winograds and Strassen's algorithms that improves the performance and
discuss the performance of the hybrid Winograd-Strassen algorithm. Since Strassen’s algorithm is based on a 2 x 2 matrix
multiplication it makes the implementation very slow for larger matrix because of its recursive nature. Though we cannot get the
theoretical threshold value of Strassen’s algorithm, so we determine the threshold to optimize the use of Strassen’s algorithm in nodes
through various experinients and provided a summary shown in a table and graphs.

1. Introduction

Matrix multiplication is an important problem in linear algebra,
its main significance for combinatorial algorithms is its equivalence
to a variety of other problems [8]. Matrix multiplication is also
essential in applied fields, such as computer graphics and digital
signal processing (DSP)[9]). DSP chips are found in devices such as
mobile phones, multimedia computers, video recorders, hard disk
drive controllers, digital cameras, and modems, as matrix operations
are the processes by which DSP chips are able to digitize sounds or
images so that they can be stored or transmitted electronically.

The fast matrix multiplication algorithm is still an open problem
but the more common area of development is the implementation of
existing algorithms rather than the design of new algorithms as shown
in [6]. Matrix multiplication is the core of many scientific
applications. Some algorithms substitute multiplications by additions
and thus reduce the number of multiplications computed as discussed
in [1][2][3][5]).

Strassen and Winograd are such algorithms that are best suited
for a practical implementation. In the case of multiplying two 2x2
matrices, Strassen’s algorithm is an improvement over the naive
algorithm. It uses only seven scalar multiplications as opposed to the
usual eight. Even though it has been shown that Strassen’s algorithm
is optimal for two-by-two matrices[10], there have been asymptotic
improvements to the algorithm for very large matrices.

Thus, the search for improvements over Strassen’s algorithm for
smaller matrices is still being conducted. Even Strassen’s algorithm is
not considered an efficient reduction as it requires the size of the
multiplicand matrices to be large powers of two.

2. Related Study

This section presents the naive, Winograd’s, and Strassen’s al-
gorithms along with discussions of the theoretical bounds for each
algorithm. Then, we present a confirmation of the theoretical study on
the running times of the algorithms, followed by the results of an
empirical study. We present an improved Hybrid algorithm, which
incorporates. Strassen’s asymptotical advantage with Winograd’s

400

practical performance. Then, we present the optimum threshold value
that can be used when using Strassen’s algorithm on a single node
through experiments and provided a summary shown in a table and
graphs.

2.1. Naive Algorithm

The naive algorithm is solely based on the familiar mathematical
definition for the multiplication of two matrices as shown in Equation
(1). To compute each entry in the final nx» matrix, we need exactly n
multiplications and » - / additions. by counting the number of
multiplications and additions in this code segment it is clear that this
standard code the total number of multiplications is #xn" = n’, and the
total number of additions is (- 1) - n° = n’ - n°. Thus, we classify the
naive algorithm as an Ofr’) algorithm, because its running time
increases as the cube of the given parameter s, so doubling the size of
n will increase the number of multiplications eight-fold. While the
algorithm performs #’ scalar multiplications, the input itself is on the
order of n°. So, the naive algorithm has an almost linear running time
with the size of the input.

2.2, Winograd’s Algorithm

Winograd’s algorithm trades multiplications for additions as
described in [1], much like Strassen’s method. Nevertheless, it is
asymptotically the same as the naive algorithm. Winograd’s algorithm
uses pairwise multiplication of couples of entries instead of
multiplying individual numbers as in the naive algorithm, and then
subtracts the accumulated error. Winograd’s algorithm is defined as
shown in Equations (2), (3), and (4) as demonstrated in [1]. Since 4;
and B; are pre-computed only once for each row and column, they
require only #° scalar multiplications. The final summation does
require O¢n°) multiplications, but only half of those in the naive
algorithm. Thus, the total number of scalar multiplications has been
reduced to % n° + n°. However, the number of additions has been
increased by % n’. Winograd’s algorithm is theoretically faster than
the naive algorithm, computers add faster than they muitiply, while the
total number of operations remains almost unchanged.

2006 F=AFEEGSENS] =3 Vol. 33, No. 1(A)

ITaive Algorittun
n

Siim= 3D A s g
id o Midk *j Ea. (1)
Winograd Algontho
¥ -- Ea
A= T oaioet 120
k=1
a2
B = Eg. ()

3§ kF:‘.l k-1 " Pokg

<]

w2
- (R el 1 * Yo NP o - bok-1,50 - A-B
k=1 Eq. (4)

id
Strassen Algoernthm
Aq,1 A2

-

1.1 Bz

[A2.1 Azz)" [22.1 Bz_z] - [c}:’, 1:13;,:_';] Ea.(5
2.3. Strassen’s Algorithm
Strassen used the Divide-and-Conquer Technique. The Idea

behind this technique was apparently named for a military
maneuver[7). The division into several parts and solving each part is
the divide, while the combining of the individual solutions into a
global solution is the conquer phase. Strassen devised a clever
method of dividing the given matrices into four sub-matrices and then
recursively multiplying them to obtain the resultant matrix. First, the
two matrices are divided into four quadrants, or submatrices, of size
n/2 by /2. Strassen’s method uses only seven multiplications and
eighteen additions for each recursive call in order to compute the final
matrix product. It is relatively simple to show that the number of
multiplications for an n-by-rn matrix is »**/, and the number of
additions is 6n°%' -6n°.

Operation Naive Winograd Strassen
Add/Sub w—n’ 32 6n”% - 6n’
+2n-2n
Multiplication n 172 + v’ n ¥

Figure 1. Summary of the operations of the three classical algorithms.

3. Empirical Study

The theoretical results were consistent with the asymptotic
models of the algorithms. The naive algorithm always had the lowest
number of scalar additions with the largest number of scalar
multiplications. Figure 2 and Figure 3 compare the three algorithms in
terms of the number of additions and the number of multiplications as
a function of the matrix parameter n. Figure 1 shows the comparison
of the number of arithmetic operations done by the three matrix
multiplication methods given n x n matrices. For large n, Strassen’s
algorithm does fewer multiplications and fewer additions and
subtractions that either of the other methods as seen in Figure 2 and
Figure 3. In practice, however, because of its recursive nature,
implementing this algorithm requires a lot of bookkeeping that might
be slow and is complicated [1]. Both naive and Winograd’s algo-
rithms were implemented very easily. The empirical tests concur with
the theoretical derivations made earlier. Both algorithms appear to run
as the cube of n, but Winograd’s algorithm is faster by a constant
because of the tradeoff between additions and multiplications. Figure
7 illustrates the comparative runtimes of the O(r’) algorithms.
Since, Strassen’s algorithm is based on recursion, it presented
problems. Despite its lower theoretical run-time complexity of
Om**”), it still took three times longer to execute than the O(r)
algorithms. This is a result of the large number of stack
operations caused by the extensive recursion of Strassen’s algorithm,
which requires large addressing headers in order to contain all four
sub-matrix pointers.

For the purpose of these performance comparisons, we conducted
tests primarily on a personal desktop computer-Intel Pentium 4 CPU
2.40 GHz with 1.25 GB of RAM. Figure 5 presents the running times
in seconds of the algorithms as a function of the matrix parameter n.
The polynomial behavior of the algorithms is clearly shown here. We
should also take note that these specific run-time approximations
depend on the processor speed.

401

Number of Scalar Addition
§ 14000
B 12000 3
£ 10000
2 5000 7 2
6000
4000 /4
2000 — A —
[\ v e
2 4 8 16 32 64 128 256 512 1024 2048

Matrix size

—e—Nalve - Wino —a— Stressen

Figure 2. Theoretical Comparison of Scalar Addition

Number of Scalar Multipli
g 10000
S so00 /’
3 2 s000
2 4000 Ls
i o /
e
0+ . . S
2 4 8 16 32 64 128 256 512 1024 2048

matrix size (n x n)

[——0— Nave —»— Wino —a— Stressen

Figure 3. Theoretical Comparison of Scalar Multiplication.

Runtime Comparison of Algorithms

e 50 + 1
E 40 ,’ X
s ¥ 30 A | /
2 / [/
10 / A
-/ P
0 T T T v u r T
[} 32 64 128 256 512 1024 2048
matrix size (n x n)
l —e—naive —e-— winograd —a— strassen —w— hybrid |
Figure 4. Runtime comparison of four matrix multiplication
algorithms.

4. Hybrid Algorithm

Due to the large number of recursive calls, Strassen’s
algorithm performs more slowly than expected in the empirical tests
mainly which theoretically should not take up too much time, but in
fact account for most of the running time as seen on Figure 7. Since
Strassen’s algorithm is based ona 2 x 2 matrix multiplication, the
bookkeeping after each recursion makes the algorithm very slow. In
view to this problem, we proposed a Hybrid algorithm in the search
for a more efficient matrix multiplication, which uses the Strassen’s
method until a predetermined cutoff size of the seven sub-matrices, af-
ter which Winograd’s algorithm takes over. For matrices of smaller
sizes, for instance when matrix size n is less than 16, has no
significant difference in cost between multiplications and additions of
submatrices. Instead, naive algorithm is likely to outperform both
Winograd’s and Strassen’s algorithm. The most intuitive hybrid
algorithm to take advantage of this is a Strassen variant where at
certain level the recursion is stopped and a simpler but faster matrix
multiplication algorithm is called instead. In this paper, Winograd’s
algorithm is considered to be simpler algorithm. The main parameter
to be investigated in this case is the breakpoint or threshold size.
Other computationally intensive tasks such as sorting also use this
kind of optimization. The theoretically faster quick-sort algorithm

2006 FEHFEFTESEYS] =EF Vol 33, No. 1(A)

performs better when the recursion is stopped and the slower but
simpler insertion sort is used to complete the sorting. Likewise, we
reduce the number of recursive calls exponentially while still taking
advantage of Strassen’s reduced number of multiplications in this
hybrid algorithm.

Figure 6 shows the pseudo code of the hybrid algorithm. The
outline of the code is similar to Strassen’s algorithm but the proposed
hybrid switches to Winograd’s algorithm at a given threshold. The
critical level of recursion before switching to Winograd is related to
the Hybrid algorithm’s performance. It depends primarily on the
starting value for n. It has been found that a larger » would yield a
more significant speedup to the matrix multiplication. The empirical
tests of the implementation show that the resultant Winograd-Strassen
hybrid algorithm performs significantly better than both of its
predecessors. Although theoretically, the Hybrid algorithm performs
almost O(’) multiplications which is reduced by the use of Strassen’s
algorithm, with a smaller scaling constant which is due to the use of
Winograd’s algorithm, it is empirically faster than the original
Winograd’s algorithm by small percentage.

il Haydorid £ reatric=Clasatdarass= A lrml ra2
T Lok ezt B L5122, ol
ot rix=<C laswiarome &losl xe2le
intoger n = a2 — ra 1.
<n~—n~x~gmm(-
SR it CmmcvE umiryg 1ie Wino grmi e
algorithan from Figae <4

1]
-1-:-(
A into i gy Prgg Pugan A
b3 B into B;:. 2l e Ve It
= anto Sain Sany Tayg Taad
Dafine aniare watrians M,, Mos Vo N, T, ™V
7 Compute S+B using Strassen’s cao:-nthn.
from F
HyboridlA <+ A, B, + B, TvI,>
S arudC Py, = P, B TVE,
Hybﬂd(:,,- By - Bage VLD
Hyonidl fag,. By, — By, VLY
FIstoridCma, + Ay, By, VD

T VI, - D
S3f - Al - Al
PSeREE Vo Vg ¥ B W

2
¥

Figure 6. Pseudo code of the Hybrid Algorithm

S. Optimum Threshold

Divide-and-conquer algorithms are naturally implemented as
recursive procedures. In that case, the partial sub-problems leading to
the one currently being solved are implicitly stored in the procedure
call stack. Due to the large number of recursive calls, Strassen’s
algorithm performs more slowly than expected. Technically speaking,
C++(which was used for the implementation) arranges the memory
spaces needed for each function call in a stack. The memory area for
each new call is placed on the top of the stack, and then taken off
again when the execution of the call is completed. At a certain level
the recursion can be stopped and a simpler but faster algorithm is
called. The main parameter to be investigated in this case is the
breakpoint or threshold size. Other computationally intensive tasks
such as sorting also use this kind of optimization.
In this study, we tried to identify the optimum threshold in using
Strassen’s algorithm based on our observation from the results. We
restrict our attention here to square matrices whose dimension is a
power of two. The determinations of the optimum threshold are
presented through a table and graphs. Along with the experiment, we
used two separate nodes for comparison purposes. System A is using
Pentium 4 CPU 3.00 GHz with 512 Gb RAM while System B is using
Xeon ™ CPU 3.00 GHz with 2.0 Gb RAM. Figure 7 and Figure 8
show that the nearer the points to zero second the more optimal it is
when implementing Strassen’s algorithm in matrix multiplication. As
it is observed from the graphs, the algorithm is optimal when the
threshold is 2° and 2°. Figure 10 shows the detailed execution time
consumed by the given matrix sizes. Though our experiment shows
these results, the values might vary in a small percentage if
implemented to a different kind of system. Our Hybrid algorithm can
perform well if the optimum threshold value will be used in the given
matrix sizes.

6. Conclusion

The result of the study leads to conclude that our Hybrid algorithm
is more efficient compared to the three classical algorithms in terms of
matrix multiplication. We found out that Strassen’s algorithm can still
be optimized in large matrix-matrix multiplication with asizeof nx n
by declaring a larger parameter for the threshold before switching to a
simpler matrix multiplication algorithm. Though many studies are
going on the search for faster algorithm on clusters of workstations,
we can conclude that matrix multiplication on square matrices is
improved by using our hybrid approach in a single node. Due to large
demand of matrix multiplication in our daily life, it will be beneficial
for us to use and improve the implemented hybrid Winograd-Strassen
algorithm. In view of the fact that iterative solution on linear systems
needs a lot of matrix multiplication, hybrid algorithm can be applied
tot.
<Acknowledgement>
E =TS AR A F7E A9EYATFAEHQ g
?lﬂ‘ﬂ’éiﬁ‘-‘i@%’-’:ﬂaﬂ ALl o A,
7. References
[1] Sara Baase and Allen Van Gelder (2000), Computer Algorithms
Introduction to Design & Analysis, Addison Wesley Longman, Inc.
[2] William H. Press, et. al.(2002), Numerical Recipes in C++,
Cambridge University Press.
[3] Sartaj Sahni (1998), Data Structures, Algorithms, and Applications
in C++, WCB McGraw-Hill.
[4] Jeri R. Hanly and Elliot B. Koffman (2001), C Program Design for
Engineers Second Edition, Addison Wesley Longman, Inc.
[5] ENis Horowitz, et. al. (1997), Computer Algorithms/C++,
Computer Science Press.
[6] Steven Huss-Ledeman, et al., “Implementation of Strassen’s
Algorithm for Matrix Multiplication.”
http://www.supercomp.org/sc96/proceedings/SC96PROC/JACOBSO
N/INDEX HTM.
[7] Bruce P. Hillam, “Introduction to Algorithms: An Intuitive Object
Oriented Approach”,
http://www.csupomona.edu/~bphillam/algotext/pdfpages/cho.pdf
{8] Richard L. Burden and J. Douglas Faires (2001), Numerical
Analysis Seventh Edition, Brooks/Cole Thomson Learning Inc.
[9] D. Koenig, “Digital Signal Processing Fundamentals”,
http://www.sss-mag.com/pdf/sigdsp.pdf

Comparison of System A and System B

“Fiavw In Seccrshs.
Q-2NGaGo

2 4 8 186 32 64 128
Thrashold value

e A (B4X64) -t B (B4x64) .4 - A (128x128)]
—>—B (128x128) ---@ - - A (256x256) —a— B (256x256)
Figure 7. Comparison of System A and B using Strassen
Algorithm in small sized matrix

Comp of Aand B
2000
7800 I
1600
1400
E 1200 \\
1000
5 800 \\
600
B S
200 B —p —
i
2 4 8 18 32 e84 12 256 512 1024
Threshotd value
e A B12x512) —a—B (512x512) A (1024x1024)
—w— B (1024x1024) —g— B (2048x2048)

Figure 8. Comparison of System A and B using Strassen
Algorithm in larger matrix size.

