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ABSTRACT

We present two techniques based on lookup tables to reduce complexity of the well-known
Schnorr-Euchner (SE) sphere decoder (SD) without introducing performance degradation. By the
aid of lookup tables, the computational loads caused by the SE enumeration and decision
feedback are reduced at the cost of higher storage capacity. Simulation results are provided to
verify performance and complexity of the proposed decoders.
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| . Introduction

The application of multiple transmit and
receive antennas to wireless communication
systems, ie, multiple input multiple output
(MIMO) systems, has drawn a lot of attention
from researchers because MIMO systems are

theoretically shown to remarkably increase
spectral efficiencies [1]. However, for signal
detection in MIMO system, the optimal
brute-force maximum-likelihood (BE-ML)
decoder has very high or even infeasible
complexity  since its  complexity = grows
exponentially in the number of transmit

antennas. In order to achieve ML performance
at reduced complexity, a class of detection
algorithms, referred to as sphere decoders, has
been developed ([2]-[5]. Among them, the
sphere decoder based on Schnorr-Euchner
enumeration (SE-SD) [4]-[5] is of more interest
due to its low complexity.

In this paper, we present two approaches for -

lowering the complexity of the SE-SD based on
the lookup tables. The first method, called LT1
(Lookup  Table 1), eliminates the SE
enumeration, thereby making the SE-SD more

. increases

compact at the cost of a small increase in
memory capacity. Based on the finite property
the transmission constellation, the second one,
called LT2, generates a number of lookup
tables, thanks to which the computational load
of the decision feedback can be reduced. The
amount of storage capacity required by the LT2
proportionally to the number of
transmit antennas and the constellation size.
Simulation results are provided to demonstrate
performance and complexity of the proposed
methods.

Il. System model

Consider an uncoded MIMO system with 7
transmit and "r receive antennas, denoted as
(27 ong) system. At the transmitter, the input
data partitioned into  ”r
sub-streams (layers), each of which is then
modulated by an M -level QAM modulation
scheme and transmitted from a different
transmit antenna. The transmission isperformed

sequence is
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in a burst by burst basis over a quasi-static
Rayleigh fading channel changing randomly
from one burst of length L (symbol durations)
to the other. The power launched by each
transmit antenna is in proportion to nr 5o that
the total transmitted power is a constant and
independent of "r.

The complex baseband signal model is given
by:

r,=Hs +w, 1)

where T. and Sc are respectively the frX!
received signal, nr X1 transmitted signal vectors,

the nrXl1

complex Gaussian noise vector with variance

vector W. is an iid zero-mean
o’per complex dimension, He is the "&Xnr
channel matrix, whose entries are the path
gains between transmit and receive antennas
modelled as the samples of a
complex Gaussian random variable with equal
variance of 0.5 per real dimension. In the

Zero-mean

sequel, we assume r ="k,

One can equivalently express the system (1)
as [3]:

r=Hs+w )

R R, | Riw. I
'{s{n}] Sz[s{sc}], w=[s{wr}],
a [0 )

-8} wfm}], %} ana Shl respectively
denote the real and imaginary part of a. H
has a full rank of ™=2nr,

Under the assumption that H is perfectly

known at the receiver, the transmitted vector is
ML decoded according to:

where

- 2
= infr — Hs
s=arg 2‘5‘" | ®3)
where Q is the set of N=M" integers,
from which a QAM constellation is carved, e.g.,

Q={3-113} for 16-QAM.

1. Schnorr-Euchner Sphere Decoder

Instead of ML decoding $ wusing (3), a
sphere decoder try to search for the ML
solution based on the following equation [2]-[5]:

§ = arg minlv - R

m

. 2
= argmm2|vk -R, 5, —§k|
s€Q por} *

)

where v=Q'r, Q is a mxm unitary matrix,
. To - . I .
ie, QQ=L,, 1, is a mxm identity matrix, R
is a mxm upper triangular matrix, Q@ and R

are obtained from the QR decomposition of H,

i

H=QR, & = ERk.isi ‘

Le., i=k+1

To avoid an exhaustive search, a sphere

decoder examines only signal points that
satisfy:
2
Iv-®rf"<c 5)

where the initial sphere radius Jc large
enough to contain the ML solution.

For the sake of completeness, the SE-SD that
solves (5) is summarized below. Readers are

referred to [5] for more details of the SE-SD.
SE-SD Algorithm- Input: V-R. € Output: §
Step 1 ki=m, 7,=0

&= 0, and Dumin=C.

(Initialization) Set

’

s, = round b
Ry ,

Ay = sign(vk -& — Ry 15k )' and L =1,
Step 3: (Main

Step 2: Set

step) If
2
(Pnin 2% =& ‘Rk,kskl +*Tey or (W >N), then if

k=m, terminate, else go to Step 5.

i

1= ), RS,
Step 4: If k>1, then ({let St E% k

2
Tiq 1=in _gk"Rk,ksk| +Ty, k=k-1, and go to

2
Din = Ivk ~-& "Rk,kskl +Tk,

Step 2},

save new solution §:=§, let k=k+1}.

else {set

Step 5: (Schnorr-Euchner enumeration) If
(L =N), then {let Sk = 8, + 28,
Ay =~by ~sign(A, )},

Step 6: If ls]= M , then go to Step 5, else

{set k=L *+1 and go to Step 3}.
Here round() denotes rounding to the closest

integer €2, and sign() denotes the sign of
the term inside the bracket.

IV. Proposed Decoders

1. Proposed LT1-SD Decoder
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In the SE-SD presented above, St is drawn
from a sequence of values generated by the SE

enumeration. Specifically, at level &, the
decoder  first determines the midpoint
¢ = round Yk =8k

kk end computes

Ve =&k = RexSe | The sequence of values at level
k is generated as follows.

I =& R5 20,

5i €, 542, 5, -2 5 +4, 5, -4,..}nQ

CIf Ve GRS <0,

sy €f 5k =2 5,42, 5 -4, 5, +4,.}n0

The proposed LT1-SD decoder will eliminate
the SE enumeration by the observation that

when S: is selected from the above sequences,
it creates a corresponding sequence of

Vi — &% ‘Rk,ksklz, that obeys
an ascending order. This order is referred to as
"optimal testing” order.Unlike the SE-SD, the
proposed LT1-SD determines the optimal testing

Euclidean distances,

order without having to utilize the SE
enumeration.
Let z=(2,2,--.2y) be a vector containing

N integers eQarranged in an increasing order.
For example, for 16-QAM, Z= (_ 3,-1L1, 3)with
N =4 Tlustrated in Fig. 1 is the approach to
determine the optimal testing order at layer &
for 16-QAM simply by comparing s =¥k =&k
boundaries (462,65 and

with  appropriate

€1:¢2), called b-boundaries and c-boundaries.

=-=R, =R,
|

Fig. P‘__b_e ini gl%cﬁa%mal tqle)éti:ng rder at
level £ for 16-QAM.

For example, since & < <b;, je, M is in
the dotted region, St =22 is the first value to
be tested. In addition, since 7t <¢i, the optimal
testing order for all four values in Z at level

is (22.25.21). In case ™ >¢€, the optimal

testing order becomes (22, 23,21, 24) . Note that
each QAM constellation has its own
b-boundaries and c-boundaries, which are
known in advance.

In the LT1-SD, the optimal testing order is

stored in lookup table ik=("1k»i§’---:":/)in terms
of indexes of integer values in Z. The LT1-SD
is summarized as follows.

LT1-SD Algorithm- Input: V-R.¥, €. Qutput: §

Step 1. (Initialization) Set k=m, Ty =0,
MTm = Vm, and Dmin =C,

Step 2: Use T« to generate lookup table ik
at level &, set k=1,

Step 3: If (k<N), then {get Sk by setting

Se=Ip

2
and let D= - Reasi| +Tiy,
4 1t D2D,,) or G >N), then if

(k=”‘), terminate, else {set k=k+1, lp=1l+1

Step

‘and go to Step 3}.

=v, - YR, 5.
Step 5: If k>1, then {let et = Ve ;,, ki

Tea=D, k=k-1, and go to Step 2}, else {set
Dpin =D, save new solution $:=s, let k=k+1,
L=l +1, and go to Step 3}.

One can see from the LT1-SD that the SE
enumeration no longer exists.

2. Proposed LT2-SD Decoder

In the LT1-SD, the computation of the

=SSR, 5.
feedback term % ,; k%

factor that results in high complexity,
particularly at low signal-to-noise' ratio, because

is also a possible

during the search & may be repeatedly

computed. Since Si are selected from a finite
set €, in addition to the quasi-static of the
channel, the complexity of the LT1-SD can be
further reduced by pre-computing the products
Riisi and storing them in lookup tables.

For example, consider a MIMO system with
16-QAM. After performing the QR
decomposition of H, the LT2-SD computes the
product of the matrix R with the four values
3.-11,3)eQand results
R, =-3R R; =R,

stores the in 4

matrices: R,=-R, and

’

Ry=3R_ Clearly, this approach allows the
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decoder to have low complexity at the cost of
higher capacity storage. Thus, it is suitable for
MIMO applications with small numbers of
transmit antennas.

Now, the LT2-SD is summary as follows.

LT2-SD Algorithm- Input:V:R. Rp... Ry, N, C
Output: §

Step 1: (Initialization) Set
N =Vm, and Dmin =C

Step 2: Use Mk to generate lookup table i

k;:m’ Tmi=0

’

at level k, set Lk =1,

Step 3: If (% =N), then {get Sk by setting
S = zif. and let D:=|17k —Rkvksk|2 +Tk}.

Step 4: If (D2Dy) or @ >N), then if

(k='”), terminate, else {set k=k+I1, L=l +1
and go to Step 3}.

n ik
o— - 3
N1 = Vit Z R
v

’

Step 5: If k>1, then {let

Tia=D, k=k-1, and go to Step 2}, else {set
Dyn =D, save new solution §:i=s, let k=k+1,

L=l +1, and go to Step 3}.

V. Simulation Results

We investigate performances and complexities
of the proposed decoders by applying to a (4,
4) system with 16-QAM modulation. In the
simulations, signals are transmitted in a burst
by burst basis with burst length of 100 symbol
durations. In addition, the channel matrix H is
assumed to remain fixed within one burst and
changes randomly from this burst to the next.
Thus, QR decomposition of H is performed
once per burst. The initial square sphere radius

C is set equal to 100. If no signal point exists
inside the sphere, the radius will be increased

by a step of 02Cuntil a point is found. The
algorithms are all implemented in floating-point
C, then converted into mex file and used in
MATLAB 6. We use the number of floating
point  operations  (flops), ie., addition,
subtraction, multiplication, division, as a
measure for complexity.

Mlustrated in Fig. 1 are the bit error rate
(BER) curves of the SE-SD, LT1-SD, and
LT2-SD in a (4, 4) system employing 16-QAM
modulation. One can see from Fig. 1 that
performances of the three decoders are almost

identical. Clearly, the proposed LT1-SD and
LT2-SD are able to provide the system with
ML performance. The important point is that,
when utilizing the proposed decoders, the
system achieves ML performance at lower
complexity than when using the conventional
SE-SD as shown in Fig. 2. For example, at SNR
= 24 dB, the LT1-SD and LT2-SD allows the
system to reduce the complexity by factors of
around 1.38 and 1.68, respectively.
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Fig. 1: Performance of the SE-SD, LT1-SD,
and LT2-SD in a (4, 4) system with 16-QAM
symbols.
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Fig. 2: Complexity of the SE-SD, LT1-SD, and
LT2-SD in a (4, 4) system with 16-QAM
symbols.

VI. CONCLUSION

Two reduced complexity SE sphere decoders
are proposed for signal detection in MIMO
systems. The proposed LT1-SD eliminates the
SE enumeration in the conventional SE-SD by
storing the optimal testing order in lookup
tables. The proposed LT2-8D is modified from
the LT1-SD by pre-computing the decision
feedback terms and saving them in the
memory. Simulation results show that the
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proposed decoders enable the system to have
low detection complexity without altering their
optimality. Yet, low complexity is achieved as
the cost of higher storage capacity.
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