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ABSTRACT

A key issue toward mobile multimedia communications is to create technologies for broadband signal
transmission that can support high quality services. Such a broadband mobile communications system should
be able to overcome severe distortion caused by time-varying multi-path fading channel, while providing
high spectral efficiency and low power consumption. For these reasons, an adaptive suboptimum decision
feedback equalizer (DFE) for the single-carrier short-burst transmissions system is considered as one of the
feasible solutions. For the performance improvement of the system with the short-burst format including the
short training sequence, in this paper, the multiple-training least mean square (MTLMS) based DFE scheme
with soft decision feedback is proposed and its performance is investigated in mobile wireless channels
throughout computer simulation.
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1 . Introduction power at the receiver. By contrast, the least
mean square (LMS) algorithm has low
The recursive least squares (RLS)type computational complexity but the convergence

algorithms have been used commonly because
these algorithms provide a fast converging
property. But, these algorithms require high
computational complexity and also provide a
numerical instability when the eigenvalue
spread of the input correlation matrix is large
[1]. As a consequence, the RLS based equalizer
consumes a large amount of the computational

is very slow when the eigenvalue spread of the
input  correlation matrix is large. A
multiple-training LMS (MTLMS) algorithm has
been known as an effective adaptive algorithm
[1] that can provide the desired converging
performance with a competitive computational
complexity in such short-burst transmissions
with a short training sequence. This algorithm
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has mitigated the problem of the slow
convergence by using the multiple-training
method, i.e., the reuse of the received training
symbols and of the numerical instability by
regularizing the solution of the adaptive
coefficient vector such that the sensitivity to
small eigenvalues is minimal while this
capability is absent from the conventional LMS
algorithm. Recently this MTLMS algorithm has
been applied to the mobile wireless
communications  system, especially 15136
receiver [2].

In this paper, to mitigate the effect of error
propagation and provide robustness at low
SNRs, we propose MTLMS based DFE with a
simple soft decision feedback device and
investigate the performance of the equalizer
according to the iterations parameter, the length
of the training sequence andthe Doppler
frequency in  mobile wireless  channels
throughout the computer simulations.

[1. Multiple-training LMS based DFE

Let the burst format be composed of the
training sequence and the message sequence. If
the DFE using the MTLMS algorithm is in the
training mode, the received training sequence is
repeatedly trained up to a pre-assigned
iteration number, K. Then the tracking mode is
operated to acquire the equalized message
sequence. In the training mode, the DFE tap
coefficients are acquired from the last iteration.
In the tracking mode, the message symbols are
equalized with these converged DFE tap
coefficients as its initials. In [2], the MTLMS
algorithm was also used extensively in the
tracking mode for exploring fully the decision
information. However, the  performance
improvement is very slightbut the complexity is
increased. So, this operation is not considered.

In the MTLMS based DFE, the DFE output

@'(n) at the gq-th iteration, 1<9<K for
training and q=1 for tracking, is given by

Np-1 Ny,
av(n)= ﬁ: g} r(n—-i)+ 2 gim Ndi(n-j)
pary =l ¢y
where gi(nii) and gi(nij) represent the
feedforward filter (FFF) and feedback filter

(FBF) tap coefficients at qgth iteration,
respectively. V; and N, are the length of FFF

and FBF, respectively. d%(n—j) represents the

feedback symbol which is the known symbol
a(n-j) for training mode and the previously

detected hard- or soft-decision symbol @’(n-j)
for tracking mode. Note that r(n-i) is the
received signal which has the same value for
all iterations and so the superscript q can be
dropped. The DFE tap update equation using
MTLMS algorithm at the g-th iteration can be
represented as

gin+Liy=ghmiy+ pre® mx' (n-i) i=0,1--,N; —1(2)

o (n+L j)=gl(m )+ e (Md* (n=j) j=12.-.N, (3)

where the superscript * denotes the complex
conjugation and us and b, represent the FFF
step size and the FBF step size, respectively.
x(n-j) is the j th power normalized output
element of the received sequence and given by

x(n—i)=r(n-i)/,[e+P(n;i) @)

where P(n;i) is the power
estimate of nn-i) and € is a small constant
that eliminate overflow when the value of
P(n;i) are very small. For computing the values
of P(n;i), the exponential weighted method was
used as follows

instantaneous

P = BP(-L)+(-Blrn-df (5

where B is the forgetting factor between 0
and 1. The error signal is computed by

e(n)=a’(n)~d*(n) ©6)

In the MTLMS algorithm, note that the initial
weight vector at q th iteration is the same as
the last updated weight vector at (g-1) th
iteration. In addition, the term "normalized"
was dropped for convenience. The performance
of the MTLMS based DFE becomes better with
the increase of the iterations number K.
However, the computational complexity also

increases linearly with K. The MTLMS
algorithm has several merits over other
algorithms such as LMS and RLS [1]. The
MTLMS algorithm can permit the faster

tracking performance than the LMS algorithm
in the time-varying channel. In addition,
because the MTLMS algorithm performs
regularization in solving for the adaptive
coefficients, it is more robust to noise for
spectrally nulled data than LMS algorithm. The
RLS algorithm was shown to have instability
and noise amplification properties that are
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traceable to the large eigenvalue spread of the
data correlation matrix. But, the MTLMS
algorithm does not suffer from these problems.

While the optimum soft feedback is
estimated using maximum a  posteriori
probability (MAP) algorithms, the simple soft
decision method is acquired by approximating
the optimum approach and requires only the
simple operation of passing the DFE output
through a (soft) nonlinear function.

Note that although the a posteriori
probability of a(n) is, in general, a function of
all available observations, it is the current
observation a(n) that contributes the most to
the value of this probability (since a(n) is the
equalized output corresponding to a(n)). Thus,
it is assumed that the soft feedback a(n) is a
function only of the current observation a(n).
Accordingly,

@(n) = Ela(m)|a(m) = Y, a(m)P(a(n) | a(n)

Ya(m)
and
Pla(n),a(m) _ _ P(a(n)| a(m)P(a(n))

P@m) Y, P@am)|atm)Pla(n)
& 8

where the a priori probability Pla(n)la(n))
can be given as

Pla(n)|an) =

1 ~ 2
Exp(-y|a(n)—a(n)|)
P I I )
where y is the signal to ISI-plus-noise ratio.
Using Eq. (7), (8) and (9), and assuming that
a(n) is QPSK, the following soft decision

function is obtained:

P@a(ny|a(ny) =

an = flan) = :/%(tanh(ﬁy Re(d(n))+ j tanh{y/Zy Im(a(n))
Soft feedback is obtained simply by passing
the real part and the imaginary part of the
DFE output through a hyperbolic tangent
function. This method requires the knowledge
of the signal to ISI-plus-noise ratio,y,. However,
an appropriate fixed value of ycan be chosen
without  greatly affecting the achievable
performance of the soft-feedback DFE.

(10)

lll. Simulation and Results

Mobile radio channels can be modeled as
multipath Rayleigh fading channels. Coefficients
of power delay profiles are COST-207 channel
coefficients used in [3] (some modification is

done for urban model).

A QPSK signal is transmitted. Each
transmitted burst contains the training sequence
of variable length A and the message sequence
of the length of 144 (only for the purpose of
the simulation). The carrier frequency is 5GHz
and the channel bandwidth is 1MHz. For
channel model the FFF length was set to be 11
and the FBF length was set to be 9. The FFF
step size was 0.05 and the FBF step size was
0.005 for both channels. For the soft decision
feedback DFE, y=5dB is used [4].

In Table 1, the computational complexities of
the MTLMS, RLS, fast RLS (FRLS), LMS, and
power-normalized LMS (NLMS) algorithms are
compared in terms of the number of operations
per input sample for training mode. N denotes
the number of equalizer tap coefficients.

Table 1. Complexity comparisons of various
algorithms

Algorithms | Complex multiplications | Complex division
MTLMS K(2N+1) N

RLS 25N*+4.5N 2

FRLS 20N+5 3

LMS 2N+1 0

NLMS 2N+1 N
Since the MTLMS algorithm is the

block-iterative algorithm, the performance of a
MTLMS based DFE depends on the iterations
parameter (K) and the length of the training
sequence (A). Therefore, the effects of the
iterations parameter (K) and the length of
training sequence (A) on the BER performance
are investigated.

Fig. 1 shows the BER performance of a
MTLMS based DFE as a function of the
iterations parameter (K). It is shown that the
performance is improved as the value of K
increases while the computational complexity is
proportional to K. Since the FFF step size of
0.05 is not small enough to achieve the stable
MSE performance, the BER performance is also
not stable. To achieve the stable performance, a
smaller FFF step size is needed. However,
since the large FFF step size can give the faster
converging performance and the smaller
complex multiplications, the FFF step size of
0.05 is hold. A MTLMS based DFE with the
soft decision feedback shows the better
performance than a MTLMS based DFE with
the hard decision feedback at SNR of 18dB.

Fig. 2 shows the BER performance of a
MTLMS based DFE as a function of a
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slot-normalized Doppler frequency. As a
normalized Doppler frequency increases, the
BER performance becomes worse. Note that the
performance of a DFE with the largest K goes
through the faster degradation. The reason is
that the TDMA slot with the larger K has a
more chance of a deep fade during a given
transmit time and the TDMA slot of a deep
fade cannot be equalized reliably.

A2

BER

The paramter K

Fig. 1 BER performance of a MTLMS based
DFE as a function of the iterations parameter
(K). SNR=18dB , f,T,=0.00012, Solid line:
hard decision; Dotted line: soft decision, Circle:
16 training; Square: 32 training

BER
<

1 2 3 1 ; 5 7 B
Normalized Doppler frequency f, T) x1*

Fig. 2 BER performance of a MTLMS based

DFE as a function of the normalized Doppler

frequency. K=4, SNR=18dB, Soft decision

feedback, Solid line: 16 training; Dotted line: 32

training; Dashed line: 64 training.

IV. Conclusion

The MTLMS algorithm has mitigated the
problem of the slow convergence by using the
multiple-training method with a competitive
computational complexity in such short-burst

transmissions by using a short training
sequence. Soft decision feedback device can
mitigate the effect of error propagation and
provide robustness at low SNR. With these
attractive features, in this paper, a MTLMS
based DFE method with soft decision feedback
was proposed and its performance was
investigated in mobile wireless channels
throughout the computer simulations.
Simulation results show that the better
performance can be achieved as the length of
the training sequence increases, but the spectral
efficiency is lowered and the system becomes
weaker to time-varying fading. The more
training sequences are required in the higher
normalized Doppler frequency, and MTLMS
with soft decision feedback shows better BER
performance than the case of hard decision.
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