2006년도 한국표면공학회 추계 학술발표회 논문초록집

A Study on the characteristics of TiZrAlN nanocomposite thin films synthesized by CFUBMS

Youn J Kim, Ho Y. Lee, Tae J. Byun, Kab S. Kim, Jeon G. Han Center for Advanced Plasma Surface Technology, Sungkyunkwan University Suwon 440-746, Korea (e-mail: tennis0828@skku.edu)

1. 서론

PVD hard coatings such as TiN, TiAlN and CrN have been developed for the improvement of wear resistance and thermal stability [1, 2]. These general-purpose hard coatings, however, have been limited to cutting processes involving high-speed and lubrication-free machining due to the decrease in hardness and oxidation resistance observed at elevated temperatures [3, 4]. Therefore, ternary and quaternary nanostructured hard coatings have recently attracted increasing interest owing to their unique properties, such as lower adhesion of the surface to the friction partner, better oxidation resistance [5].

2. 본론

Quaternary TiZrAlN nanocomposite thin films were synthesized by Closed-Field Unbalanced Magnetron Sputtering (CFUBMS), and their microstructural and mechanical characteristics were examined. The grain refinement of the TiZrAlN nanocomposite thin films was controlled by adjusting the N2 partial pressure.

3. 결과

The hardness of the film varied with the N2 partial pressure and the maximum value was obtained approximately 47 GPa. It was also confirmed that there is a critical value of the grain size (dc) to need maximum hardness.

참고문헌

- 1. H.Ehrhardt, Surf. & Coat. Technol., 74-75 (1995) 29.
- 2. P.Rogl, J.C.Schuster, Phase diagrams of Ternary Boron Nitride and Silicon Nitride Systems, ASM international, Metals Park, OH (1992).
- 3. S.Vepek, Surf. & Coat. Technol., 86-87 (1996) 394.
- 4. J.Musil, Surf. & Coat. Technol., 125 (322).
- 5. J. Patscheider et al., Surf. & Coat. Technol. 146-147 (2001) 201-208.