2006년도 한국표면공학회 추계 학술발표회 논문초록집

Ti₃(Al,Si)C₂ 소결체의 고온산화 High Temperature Oxidation of Ti₃(Al,Si)C₂ Sintered Materials in Air

Thuan Dinh Nguyen, Dong-Bok Lee Center for Advanced Plasma Surface Technology, Sungkyunkwan University

1. Introduction

The ternary carbides such as Ti₃AlC₂ and Ti₃SiC₂ have attracted an enormous attention because of its unique combination of both metallic and ceramic properties. Like metals, they have excellent electrical and thermal conductivities, high toughness, high fatigue-crack growth threshold, low hardness, good machinability, and high-thermal shock resistance. Like ceramics, they display excellent chemical resistance, high Young's modulus, high temperature strength, and high melting point. In this study, Ti₃(Al,Si)C₂ was synthesized via powder metallurgical routes, and its high temperature oxidation behavior was studied.

2. Experimental Procedure

The starting powders of TiC_x (x=0.6), Al and Si were mixed, and hot pressed at 1360°C to synthesize bulk $Ti_3(Al,Si)C_2$ specimens under 25 MPa Ar pressure for 90 min. Oxidation tests were performed at 900–1100°C in atmospheric air. The specimens were investigated by TG-DTA, SEM/EDS, AES, XRD.

3. Results

The oxidation of $Ti_3(Al,Si)C_2$ resulted in the formation of an outer TiO_2 oxide layer, an intermediate Al_2O_3 -rich layer, and an inner $(TiO_2+SiO_2+Al_2O_3)$ -mixed oxide layer. During oxidation, oxygen diffused inward, and carbon escaped from $Ti_3(Al,Si)C_2$.

Reference

- 1. Y. C. Zhou, H. B. Zhang, M. Y. Liu, J. Y. Wang, Y. W. Bao. Mater. Res. Innov . (2004) 97.
- 2. H. B. Zhang, Y. C. Zhou, Y. W. Bao, M. S. Li, Acta Materialia, 52 (2004) 3631.
- 3. J. Y. Wang, Y. C. Zhou. J. Phys.: Condens. Matter 15 (2003) 5959.