Parallel Match Algorithm to Speed up Evaluation of Path-oriented Queries in Document Databases
Hee-Sook Park *, Woo-Hyun Cho, Hee-Hiong Ngu and Carol Hazlewood

Department of Computer Engineering
Pukyong National University
559-1 Daeyon-dong, Nam-gu, Busan, 608-73'7, Republic of Korea
E-mail: Hee-Sook Park mailto:bg007@ecdunetdu.net

Key Words : Path Signature, Parallel Match Algorithm

ABSTRACT

XML is a popular syntax for a semistructured data to exchange and manipulate documents on network.
The potential of XML is unlimited and many applications using XML are arising. A path-oriented query
frequently is issued toward XML documents. Then, the database management system has to evaluate the
query that contains a path and to find the stored location in the database. So, an indexing algorithm for
high performance is needed to speed up evaluation process of the path-oriented query. Queries navigate
semistructured data and can be accelerated using path expressions. To evaluate the path-oriented query
toward XML document, we need to match the path in the query and the paths for all elements in the XML
document. The sequential methods to improve performance of evaluation for the path-oriented query have
been proposed. An indexing technique that avoids access to non-related elements and can be enhanced by
combining the technique of pat-trees with scanning of signatures is proposed. A solution that encodes
paths as string and inserts those strings into a special index that is highly optimized for long and complex
keys is described.

A method for indexing and storing XML data based on a numbering scheme for elements is introduced.

In this paper, we concern the parallel match algorithm to speed up evaluation process of the path-oriented

query using path signatures.

<Inventory code="j100a12">
<Maker>
<items>
<mame> K1-123 </name>
<price> 23,000</price>
<quantity> 400 </quantity>
<{date> July 25th 2003 </date>
</items>
</Maker>
<warehouse no="kp-001">
<location> Pusan city</location>
<manager> Kim Yoo-S8in </manager>
<date> June 5th 2004 </date>
<{/warehouse>
</inventory>

Fig. 1. A sample XML document

- 103 -

Table 1. A path signature file for a sample XML document.

Location Path of Element Path Signature(h=7)
1 Inventory 0011001
2 Inventory/Maker 1010110
3 Inventory/Maker/items 0001101
4 Inventory/Maker/items/name 1100101
5 Inventory/Maker/items/price 0000101
6 Inventory/Maker/items/quantity 1100001
7 Inventory/Maker/items/date 0011101
8 Inventory/warehouse 0100101
9 Iriventory/warehouse/location 0000110

10 Inventory/warehouse/manager 0010011
11 Inventory/warehouse/date 0010110

First, using the binary match trie that is a binary trie in which the values of successive bits in the binary
pattern determine a path of the tree from root downward. The maximum level of binary match tire

corresponds to the length of a path signature(h).

Fig. 2. Binary trie structure of the path signature file.

Next, we transform the binary match trie into the parallel match structure and construct the parallel match
algorithm for each processing element. A parallel match structure is a connection of processing elements.
Each processing element has one input line, two(left and right) output lines, some storages, and simple
comparator. The parallel match structure equals to configuration of the binary match trie. That is, a node
corresponds to a processing element, and links to input or output lines. All of processing elements in

parallel match structure operate in parallel to perform a matching process.

- 104 -

To match using the parallel match structure, the path signature to be matched should be serially entered
into the processing element corresponding to the root node by rightmost bit first. The 'match’ signal is

attached as the last input.

Fig. 3. Each processing element and parallel match structure.

Our proposed parallel match algorithm by parallel match structure consists of two steps for matching path
signature. After doing first step, the root node of level 1 in parallel match structure has leftmost bit of path
signature to be matched and nodes of level / have i-th bit of path signature. In second step, the ‘match’
signal is entered into the root node and then the root node generates ‘match’ or ‘nomatch’ signal as this
node has stored ‘0’ or ‘1’. If a node has stored ‘0’ signal then generates ‘match’ signal to left and right
nodes, and if a node has stored ‘1’ signal then generates ‘nomatch’ signal to left node and ‘match’ signal
to right node. After each ‘match’ or ‘nomatch’ signal reaches leaf node, each leaf node corresponding to
the given path signature to be matched holds ‘match’ signal but each leaf node not to be matched holds
‘nomatch’ signal.

For example, if we assume that a path signature value for path-oriented query issued by user has a bit
pattern of '1000100'. We can get the location information 2 of the signature value '1010110' and 4 of the
signature value '1100101’ as shown in Fig. 4.

Finally, we analyze the performance of our paralle]l match method. The time complexity of our method
has the order-of-magnitude similar to the logarithm of N to the base 2, where N is the number of path
signatures for an XML document. Also, we simulate our proposed parallel match algorithm to confirm

correctness.

- 105 -

. tue
falee
frue

talge

trup frue
| : () (o)
talsg { o

false

o v
0 o

fatse faige, alse

vug/y

FAU LINEA VNS LL74 VISP sise Nalse Ayus faise rue
/

taise

¥ 1
DOIONOIOLC
faisa,” \felee falses j A tl o
Y ':.f tutsw ' talng"" /5, raise/y, talsafy,

L] R "f';:
DO OO0 OI0IO

ise [y ; false, 7 \iatge § % g
AR TN AW (aisa'f talse f gy WS%) § Vaise ™01

s f s N S
[tosn [rmse] [tmse] [wiso]| won] [t | [t st tme

Fig. 4. An example of parallel match processing.

Reference

[1] T. Bray, E. Maler, J. Paoli, C. M. Sperberg McQueen(2000), Extensible Markup Language(XML) 1.0,
W3C Recommendation, http://www.w3.0rg/TR/2000/REC-xml-20001006/.

[2] A. Deutch, M. Fernandez, D. Forescu, A. Levy, D. Suciu(1998), XML-QL: A Query Langu_age for
XML, http://www.w3.0rg/TR/NOTE-xml-ql/.

[3]1S. Boag, D. Chanberlin, M. Fernandez, D. Florescu, J. Robie, J. Simeon(2002), XQuery 1.0: An XML
Query Language, http://www.w3.0rg/TR/2002/WD-xquery-20020816/.

[4] D. Eastlake, J. Reagle, D. Solo,(2002), XML-Signature Syntax and Processing, W3C
Recommendation, http://www.w3.0rg/TR/2002/REC-xmldsig-core-20020212/.

[5] Yangjun Chen, Gerald Huck(2000), Path Signatures: A Way to Speed up Evaluation of Path-oriented
Queries in Document Databases, Proceedings of the International Conference on Web Information
System Engineering(WISE 2000), pp. 240-244.

[6] Brian F. Cooper et al(2001), A Fast Index for Semistructured Data, Proceedings of the 27th
International Conference on Very Large Data Bases table of contents(VLDB 2001).

[7] Q. Li, B. Moon(2001), Indexing and Querying XML Data for Regular Path Expression, Proceedings
of the 27th International Conference on Very Large Data Bases table of contents(VLDB 2001).

[8] C. Faloutsos, Access Methods for Text(1985), ACM Computing Surveys, Vol. 17, No.1, pp. 49-74.

{9] Carlo Zaniolo et al(1997), Advanced Database Systems, Morgan Kaufmann Publishers.

[10] William B. Frakes, Ricardo Baeza-Yates(1992), in: Information Retrieval: Data Structures and
Algorithi’ns, Prentice Hall PTR; Facsimile edition.

- 106 ~

