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ABSTRACT

Introduction

With the significant infrastructure investments in recent years, grid computing continues to
challenge the way scientific computing has been done up until a decade ago. TeraGrid [1], an
NSF-supported tera-scale grid computing environment established by combining computational
resources of eight geographically different centers in USA as a single resource pool, is now
readily available to researchers for solving grand-challenge problems. As demands towards
scientific discoveries through high-performance computing are increasing rapidly, the use of
these resources are expected to become more routine. With the recent initiative of the NSF
Office of Cyberinfrastructure [2] to fund peta-scale high-performance grid computing
capabilities, formation of a PetaGrid may soon become a reality, paving the way to scientific
discoveries.

Along with the tera or peta-scale investments, computational researchers need more advanced
tools which can facilitate using full capacity of these environments. One such tool for the
researchers in the parallel computational fluid dynamics field is MPICH-G2, which is the Grid
enabled implementation of the Message Passing Interface (MPI) [3]. This utility is capable of
starting a parallel job across Grid sites- with some predetermined CFD data block distribution.
The fact that CFD data blocks are highly interconnected requires efficient distribution of the
blocks such that communication between the Grid sites for the particular parallel job would be at
minimum. While the blocks communicate at high speed within the same Grid site, they
communicate with whatever bandwidth is provided between the Grid sites. This makes the inter-
connection between the Grid sites a bottleneck. Therefore, CFD code developers and researchers
need to optimize this communication by efficiently allocating the blocks among the Grid sites.

In the past, we have developed Dynamic Load Balancing (DLB) tools [4, 5] which can facilitate
the CFD block distribution among available computing resources, mostly clusters of processors.
DLB is very useful in environments where processors loads are changing dynamically. However,
if the computing resource is dedicated for a specific job, then a static distribution would be
sufficient for this job. In TeraGrid sites, resource schedulers handle internal distributions of
parallel tasks or chunks of dispersed sub-tasks across Grid sites. Therefore, a static distribution
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of parallel CFD blocks between Grid sites would be sufficient provided that this distribution is
optimum or efficient.

We had experience in TeraGrid with running jobs independently at different sites [6]. In this
paper, we will demonstrate an efficient CFD block distribution algorithm across Grid sites such
as TeraGrid: The blocks will be grouped together such that'inter-group communication volume is
at minimum. This will ensure optimum distribution of the blocks, hence minimum
communication between the Grid sites. We apply MeTis graph partitioning libraries [7] for the
distribution of the CFD blocks across the clusters. MeTis ensures optimum partitioning of the
graph, same as in partitioning CFD mesh blocks for parallel flow solver. We will also consider
improvements to this block distribution regarding different computational power of the Grid sites.

Block Distribution Across Grid Sites

A parallel CFD job executes on partitioned data block, called mesh blocks. As the number of the
partitioned mesh blocks increase, dependencies of one block to other increases, hence the
communication overhead. When using multiple sites, a user can balance the load and
communication between the clusters so that overall time for the job would be lowest possible. If
users are unaware of which block communicates to which, then the opportunity of using different
clusters will be lost.

In our studies, we used MeTis graph partitioner for the mesh block distribution across more than
one Grid site. In partitioning the graph, communication volume between a pair of mesh block is
the size of actual interface mesh points, since those mesh points will be used to communicate
with neighbor blocks. MeTis graph partitioner can use communication volume between the
blocks as weights between interconnected edges. Based on these weight, graph is partitioned for
optimum cut into as many as number of Grid sites to be used. Figure 1 shows a schematic of four
mesh blocks and their inter-connect distributed between two Grid sites.
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Figure 1: Four mesh blocks distributed between two Grid sites based on
communication volume

Demonstration Case

In our application, the mesh data contains 512 mesh blocks. Mesh has about 18 millions of
tetrahedral elements. Computational mesh of this problem at airplane surface is given in Figure
2. The airplane geometry is known as DLR-F6 wing-body configuration. The flow solver used is
PACER3D [8], a parallel unstructured mesh flow solver.
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To demonstrate the mesh block distribution, we assumed four Grid sites. Initially, user is
unaware of block-to-block interconnection structure. User does not know that there are 3090
connections between blocks; this is actually edges between the graph nodes. Maximum number of
neighbor of a block is 18. Therefore, mesh blocks are randomly assigned to four grid sites. One
can imagine that such an unstructured communication can cause serious overhead problem.

-

Mesh summary:

512 blocks

18 million elements
3090: # of block-block
interconnect

e 18: maximum # neighbors
a block has

Figure 2: DLR F6 wing body with 512 CFD mesh blocks

Tables 1 and 2 show number of block-to-block interconnect between the Grid sites and regarding
communication volume using random block allocation and using graph partitioning, respectively.
Considering total number of blocks, 512, random block distribution has five times more block-to-
block interconnect between Grid sites than that of using graph partitioning. Even communication
volume is about eight times much higher than graph partitioning. Actual communication time for
each case depends on the synchronization of send-receive orders of all these blocks and actual
bandwidth between Grid sites. Therefore, time measurement for actual job is essential to
conclude real benefit of the graph partitioning. Figure 3 shows block distribution on actual
airplane geometry. While blocks are scattered around without considering neighbor blocks in
random distribution, the graph partitioning grouped neighbors together so that there would be
optimum communication volume between Grid sites as well as between the blocks within each
Grid site.

Timing of different combinations run on the TeraGrid will be presented in the full paper along
with the parallel efficiency studies.
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Table 1a: number of connected blocks across Grid sites with random block distribution

Site #3 Site # ota

108,597 123,634 388,252
156,021 115,114 122,325 393,460
108,597 115,114 388,903
123,634 122,325 165,192 411,151

Table 2a: Number of connected blocks across Grid sites with graph partitioning
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Table 2b: Communication volume between Grid sites with graph partitioning
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Figure 3: Block distribution across four Grid sites (colors show different Grid sites)
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