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ABSTRACT

With the emerging of new massively parallel systems such as the IBM BlueGene with tens
of thousands of processors, the mean time between machine failures is considerably decreasing.
Therefore, the reliability of the machine becomes a very important issue. The goal of this paper is
to present new fault tolerant approach based on numerical explicit schemes for the time integration
of parabolic problems. This technique allows the application to recover from process failures and
to retrieve mathematically the lost data on the failed process(es) avoiding the roll-back operation
required in most checkpoint-restart schemes [1,2]. While for low time consuming applications
requiring small amount of resources, aborting after a failure does not really matter. However for
critical applications running for several weeks on hundreds of processors, the application shutdown
appears to be a major concern.

We construct an algorithmic solution of the problem in the context of domain decomposition and
distributed computing. The model application used throughout the paper to highlight our results is
the three dimensional heat equation as given by

d
8—1: =Au+ F(z,y,2,t), (£,9,2,t) € 2 x(0,T), won = 9(z,y, 2), u(z,y, z,0) = u,(z, vy, 2).
' (1)
We suppose that the time integration is done by a first order implicit Euler scheme,
Un+l _yn"
— = AU + F(z,y, 2, t"11), 2

and that {2 is partitioned into N subdomains {2;, j = 1..NV.

The work presented in the paper is based on the Fault Tolerant MPI (FT-MPI) [3, 4] framework
developed at the University of Tennessee. While FT-MPI is capable of surviving the simultaneous
failing of n — 1 processes in an n processes job, it remains up to the application developer to
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recover the user data, since FT-MPI does not perform any (transparent) checkpointing of user-level
data items.

As a matter of fact, we present two parallel fault tolerant algorithms to solve the 3D reconstruction
problem based on checkpointed data. For the first approach, the application process j has to store
every K time steps its current solution U n), Additionally, the artificial boundary conditions
I7* = Q;N§2;,1 have to be stored for all tlme steps m < M since the last checkpoint. The solution
U JM can then be reconstructed on the failed process with the forward time integration (2). Figure 1
demonstrates how the recovery works in one dimensional space. The vertical thick lines represent
the boundary data that need to be stored, and the intervals with circles are the unknowns of the
reconstruction process.
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Figure 1: Reconstruction procedure in one di- Figure 2: Reconstruction procedure in one di-
mension using forward time integration. mension using explicit backward time stepping.

The major advantage of this method is that it is using the same algorithm as in the standard do-
main decomposition method. The only difference is, that it is restricted to some specific subsets of
the domain. Thus, the identical solution U JM as if the process had no failures can be reconstructed.
The major disadvantage of this approach is the increased communication volume and frequency.
While checkpointing the current solution U ]" ) is done every K time steps, the boundary values
have to be saved each time step for being able to reconstruct the solution of the failed process(es).

The second approach does not require the storage of the boundary conditions of each subdo-
main at each time step, but it allows to retrieve the interface data by computation instead. It is
divided in three steps: we first compute backward in time from the available data on main memory
using the explicit formula provided by 2 (Step 1 in figure 2). Since this numerical procedure blows
up after few time steps, one can use an hyperbolic regularization such as on the telegraph equation
[5, 6] to stabilize the scheme. Then, to construct the solution outside the cone of dependencies and
therefore to determine the solution at the subdomain interface, we used a standard procedure in
inverse heat problem, the so-called space marching method [7] (Step 2 in figure 2). Finally, the
failed process has its boundaries retrieved and is able to rebuild its lost data using the forward time
integration (Step 3 in figure 2).

For the performance comparison between both methods, we have evaluated the two-dimensional
version of (1) with three different problem sizes per processor (50 * 50, 100 * 100 and 200 x 200)

— 179 .



on four different processor configurations (9, 16, 25 and 36 processes). Figure (3-4-5-6) prove that
saving the local solution each 9 time steps or saving additionally the interface do not make so much
difference and bring only a small overhead (between 5% and 15%) on the overall execution time.
Moreover, we simulated a process failure and measured the execution time required for respawning
the failed process and to reconstruct the data of this process using the backward explicit scheme.
The first results with 9 and 16 processes showed that the recovery time is in the order of 2% of the
overall execution time which is quite promising for our future work in this area.

However, figure (7-8) show some performance got with the 3D version of the heat transfer problem
and here, we clearly see the overhead of saving additionally each time step the interface especially
with the large problem size. Thus, these results make us believe the most efficient reconstruction
algorithm would be the backward explicit scheme which needs only the local solution to be check-
pointed.

Therefore, we will present on the final paper a complete parallel fault tolerant 3D heat transfer
code using the explicit backward in time as the method to retrieve the lost data on the failed pro-
cess(es). We will also simulate failures and show some timing measurements on how long it took
the application to recover and to compute the lost solution.
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Figure 3: Asynchronous checkpointing over- Figure 4. Asynchronous checkpointing over-
head with 9 processes. head with 16 processes.
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Figure 5: Asynchronous checkpointing over- Figure 6: Asynchronous checkpointing over-
head with 25 processes. head with 36 processes.
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Figure 7: Asynchronous checkpointing over- Figure 8: Asynchronous checkpointing over-
head for the small 3-D test case. head for the large 3-D test case.
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