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The development of large computational resources, as the grid comput-
ing, leads to search for parallel implementation not only based on space
decomposition as domain decomposition or operator splitting which are clas-
sical parallel methods in CFD. Indeed these methods have to face the lack
of computational granularity when the computing resources are very large.
One promising direction of parallelism can be the time domain decomposi-
tion, where the solution of problem is computed in parallel on different time
slices.

Nevertheless the difficulty of this approach comes from the matching con-
ditions for the solution at the boundaries of the time slices. Notably, when
CFD problems have nonlinear behavior. The initial guesses at the begin of
time slices have to be enhanced iteratively until to reach a given tolerance.
In this presentation, we will continue the investigation on time domain de-
composition initiated in the Pita algorithm [1], the parareal algorithm [4]
and to the multiple shooting method [2] (see (3] for details).

In order to actually investigate the benefit of the present implementation
we focus on large ODEs systems coming from the discretisation of CFD
problems, as the lead driven cavity problem and also combustion problem
as the Bratu problem. More precisely, we will introduce parallelism in the
Deferred Correction Method (DC) [5] that can be summarized as follows:

Considering an ODE systems of the form

{¢"(t) = f(t, 8(t)), $(0) = ¢o. (1)
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where ¢g, ¢(t) € CN and F: R x CN — CV.

The single time step on a DC begins by first dividing the time step [to, tena)
into a set of intermediate sub-steps defined by the points , < h<---<t,=
tena- Next a provisional approximation ¢ (t5), 41 (t;), - - -, ¢l%(2,)] is com-
puted. Using standard approximation or interpolation theory, an equation
for the error 8(t) = 4(¢) — ¢l%(¢) is built. This correction equation can be
approximated using a similar low order method, and an improved numerical
solution is constructed.

Let 0m be an approximation to §(t,,), discretisation ([5]) yields to

5m+1 = m'f‘Am‘ (f(tm-i-la ¢1[?;]+1 + 6m+l) - f(tm+1, ¢1(191,]+1))+6m+1_€m(2)

where ¢, is the value of the residual function at time tm.

The same parallelism difficulty as in the Parareal scheme ({3]), occurs with
the correction step in the DC which is sequential in nature. More precisely for
stiff problem the Jacobian Matrix of the problem have to be constructed by
automatic differentiation and a linearized problem must be solved. This two
features should be parallelized to obtain efficient solver. We Investigate to
solve this sequential correction step by using a Schur Decomposition method
providing a full parallel solver.
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