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1 Introduction

Time-dependent PDEs are generally solved using time-marching procedures. Typical time-marching procedures
fall into one or the other of two different approaches, explicit or implicit. The time step in an explicit scheme is
governed by the Courant number for high Reynolds number problems, which must not be greater than unity for
stable calculations. The stability limit for explicit schemes is set by regions in the domain where wave speeds
are high. These regions drastically reduce the time step possible for explicit schemes. Implicit schemes, on
the other hand, can maintain stability with much larger time steps when compared to their explicit counterparts.
For coupled nonlinear PDEs such as the compressible Navier—Stokes (N.--S.) equations, the use of implicit
schemes results in having to iteratively solve a coupled system of linearized equations at each time step. Hence,
a reduction in the number of time steps may be outweighed by increase in the number of arithmetic operations
at each time step. Hybrid schemes containing both implicit and explicit approaches have also been developed
to abate the disadvantages of the above mentioned approaches. In 1981 MacCormack [1] presented an explicit-
implicit predictor-corrector method that involved inversion of bidiagonal matrices in an effort to reduce computer
time. An implicit-explicit hybrid scheme was developed by Fryxell et al. [2] which extended Godonov-type
schemes to the implicit regime. An iterative implementation of the scheme in [2] was done by Dai et al. [3] for
solving the Euler equations. :

Our solver is based on a predictor-corrector methodology. The predictor part of the scheme consists of a
half time step explicit foward Euler time integration of the Euler equations followed by a full time step implicit
backward Euler time integration of the complete N.—S. equations. Spatial discretization is second-order centered
for both predictor and corrector parts of the scheme, with dependent variables being evaluated at cell centers
and fluxes evaluated at cell walls. The nonlinearites in the N.—S. equations are handled iteratively by é-form
quasilinearization, and 4-form Douglas—-Gunn time splitting [4] is used to solve the linearized equations leading
to an easily parallelizable algorithm. Shocks are captured by using MacCormack and Baldwin higher-order
artificial viscosity as given in [5].

Our ultimate goal is to have 3-D capability including turbulence effects in the context of large-eddy simula-
tion methodology, which will be highlighted at the time of the oral presentation at the conference. Moreover, in
calculations of high-Re viscous flows, where changes in the flow fields occur close to a surface, finer gridding is
required to capture these effects, especially the boundary layer. Though LES significantly reduces the amount of
arithmetic when compared with DNS, the required arithmetic still can scale as badly as Re?. This in turn results
in very long run times, and hence the need for using parallelizable alogorithms for such simulations.

We introduce the governing equations in the next section of the paper, followed by a brief description of the
standard test problem, the shock tube employed to validate the solver. Finally we present numerical solutions
and the speedups obtained by parallelization.
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2 Governing Equations

Since our solver is of a hybrid type having a predictor step solving the Euler equations and a corrector step
solving the full compressible N.—S. equations, we will write both the systems of equations in their generic form
given by '
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Equation (1) represents the entire system of governing equations in conservation form if U, F, G are interpreted
as column vectors given by,
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where p, p and T are the ususal density, pressure and temperature; V. = (u,v)T is the velocity vector; the
quantity (e + y;) , which will be represented as E in the remainder of the report, corresponds to total energy.
Elements of the stress tensor are given by:
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Finally, k is thermal conductivity; u is dynamic viscosity; X is second viscosity, and d;; is the Kronecker delta.
The corresponding Euler equations are obtained by setting u, A\, k = 0.

3 Test Case

We validate our scheme using Sods shock-tube problem [6]. The shock-tube problem is an interesting test case
because the exact time-dependent solution is known for the Euler equations in 1-D, and hence we can compare
our computed viscous solution at least qualitatively to the exact inviscid solution. The initial data for the shock-
tube problem are composed of two uniform states (generally known as left and right states) separated by a
discontinuity, physically a diaphragm. When the diaphragm is broken, two pressure waves appear, being either
a shock wave or expansion fan, which start to run into the initial fluid states as shown in Fig. 1, resulting in two
uniform states 2 and 3. In addition 1 represents the shock wave and 4 represents the expansion fan. The final
states 2 and 3 are separated by a contact surface (discontinuity in first derivatives), which means that the pressure
and the velocity of these states are equal, but density jumps across the discontinuity. The initial conditions in the
left and right sections of the shock tube are given in Table | with ali entries in SI units. The governing equations
(1) are solved on a domain Q = [0, L] x [0, W] = (0,1.0m) x (0,0.2m), with boundary conditions; the no-
slip condition is imposed at y = 0 and y = W, and an inflow condition 8U/dn = 0 and outflow condition
QU /On = 0 are applied at z = 0 and x = L, respectively.
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Parameters Left Right
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Density
Pressure 10000 1000
Expansion Fan ‘ Contact Surface Normal Shock Total Energy 2.5¢5 2.5¢4
Figure 1: Shock tube. ‘ Table 1: Initial conditions

4 Results

To compare our 2-D results with the 1-D case the density and velocity profiles at the horizontal centerline of
the domain were used. Calculations reported here were performed on a 401 x 401 grid and a time step At=
1 x 10~ 8s. The following figures suggest this is adequate, but further grid function convergence tests are being
conducted. In Fig. 2 we present comparisons between computed and exact solutions. Part (a) of the figure shows
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Figure 2: Exact vs computed results

the density profile, and part (b) displays the velocity pro-
file. Both computed profiles are in good agreement with
the exact inviscid solution. It should be noted that the in-
viscid discontinuities are now transformed to sharp but
continuous variations due to physical viscosity and heat
conduction effects, but these cannot be resolved using e Zoom in
typical gridding; hence, arificial dissipation still must be E )
used to capture these discontinuities.

Figure 3a presents a contour plot of velocity magni-
tude variation in the z-direction showing the final states
at t = 0.61ms. In Fig. 3b we display a zoomed vector
plot of the computed boundary-layer velocity profile. It
is clear that the vertical grid spacing is sufficient to pro-
vide reasonably good resolution of the boundary-layer.

Figure 3: (3a) Velocity contour in x- coordinate
direction: (3b) Zoomed boundary-layer ve-
locity profile

~ 348 -



The code was parallelized using OpenMP on the
HP Superdome SMP at the University of Ken-
tucky. The Do loops of the Douglas—Gunn time
splitting were parallelized by issuing compiler di- @
rectives such that the line solves were distrubuted
among the processors. To study the speedup ob-
tained, we used a range of number of processors
from 2 to 32 to execute the parallel algorithm. Re- 1
sults of the speedup are presented in Fig. 4. It is
should be noted that the speedups are sub-linear
and not especially good; moreover, no improve-
ment was seen in going to 32 processors, so these
results are not shown. These results are fairly '
consistent with those obtained from several other 2
pieces of software parallelized with OpenMP on P S S B R B TR T
Hewlett Packard hardware. Number of Processors

Figure 4: Speedup

5 Summary

A hybrid N.-S. solver with an explicit Euler equations predictor and an implicit corrector solving the full viscous
N.-S. equations was introduced. We demonstrate relatively good accuracy between computed and exact inviscid
solutions for Sods shock tube problem. We are able to resolve the boundary-layer profile upon using sufficiently
fine grids. We remark that employing time-splitting methods such as Douglas—Gunn to solve multi-dimensional
problems results in solution algorithms that are easily parallelizable. Finally, we presented the speedups obtained
by parallelization using OpenMP. We note that the speedups are sublinear and ongoing tests are expected to
produce some improvement, but as noted above the current speedups are not very different from earlier ones
obtained with OpenMP.
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