A Study on Sorting in A Computer Using
The Binary Multi-level Multi—~access Protocol

Chang-Duk Jung, PhD
Professor, Korea University
jcd1234@korea.ac.kr

Abstract

The sorting algorithms have been developed

to take advantage of distributed

computers. But the speedup of parallel sorting algorithms decrease rapidly with increased

number of processors due to parallel processing overhead such as context switching time

and inter—-processor communication cost. In this paper, we propose a parallel sorting

method which provides linear speedup of an optimal serial algorithm for a system with a

large number of processors. This algorithm may even provide superlinear speedup for a

practical system. The algorithm takes advantage of an interconnection network properties

and its protocol.

Key Words sorting, network protocol, superlinear speedup

1 Introduction

1.1 The Sorting of computer

sorting is one of the most
time-consuming operations which appear
frequently in many applications [1, 2].
The problem of sorting is that , unless
elements of be sorted have. some know
properties, the optimal time complexity of
any sorting algorithm for which the only
operations permitted on keys are
comparisons and interchanges is O(n

log n), where n is the number of elements

to be sorted. Thus, sorting time increases
rapidly with n.to be sorted. Thus, sorting
time increases rapidly with n.

The simplest way to implement parallel
sorting is to divide the set into n equal
size subsets and to distribute them to
each processor. after each processor
completes the sorting of its subset (local
sorting), the n sorted subsets may be
merged together (sorting). The main
difficulty with this divide — and — conquer
sorting strategy is
effective merging operation. Since most

the need for and

merging operations require many rounds

of message exchange per element,

-303 -

researchers have assumed that the cost of

parallel sorting os dominated by its
communication costs. Thus, they have
concentrated on devising algorithms

requiring low communication costs, 1 .e.,
less rounds of message exchange [3, 5,
6]. Mikkilinent and Su [7] evaluated the
performance of sorting algorithms for
common-bus local networks. The result
that for

execution time of

showed most algorithms, the

sorting actually
increases with the number of processors
i Even for the best

in the network.

algorithm, the execution time of the
algorithm decreases initially but, after the
network size reaches a certain limit, the
decrease in execution time of the local
sorting step is outweighed by the increase
in execution time of the merging process [7].

One of the theoretical debates in the
whether

area of parallel computer is

superlinear speedup of an efficient serial
(10, 8l.
Contradictory results have been published

algorithm is possible of not

based on varying assumptions. If the
serial computing model ignores context
switching time, one can conclude that
superlinear speedup is impossible [10]. If
the parallel

computing model ignores

interprocessor communications overhead,

one may conclude that superlinear
speedup is possible[8]. However, for a
practical parallel computer, the context
switching time and the communication
overhead cannot be ignored. moreover,
even if we ignore the context switching
time and the communication overhead, it
is still possible to achieve superlinear
speedup if we can take advantage of extra

hardware in the parallel computer.
2.1 Parallel Computer

A parallel computer is a set of N
processor anda communicartion subnet.
Most parallel computing models only deal
with N processors and ignore the
communication subnet or treat it as only
overhead. However, the communication
subnet represents extra hardware which
has substantial computational power for

communication and
Thus, a parallel computer could achieve
superlinear speedup if it could take
advantage of the computational power of
its communication subnet. There are
communication protocols which provide the
sorting of messages as a by-product of
the communication protocol f12].
Rothauser and Wild [13] have proposed a
protocol called MLMA (Multi-Level
Multi-Access) to resolve contention in a
common transmission medium. The original
MLMA was designed to resolve the
priority of processors in a decentralized
manner, but the algorithm can be applied
to the data instead of the processor
number. As suggested in [13], the
algorithm has been modified for a parallel
computer in which the propagation delay
is extremely small. The algorithm is
analogous to the depth first
search of the binary tree representation of

routing messages.

parallel

messages. This Binary Multi~Level
Multi-Access (BMLMA) communication
protocol also provides the sorting of
messages as a by- product of the
protocol. A similar protocol called
CAN(Control Area Network) has been

proposed for a real-time system([4]

This paper presents a parallel sorting
method which
speedup by

can provide superlinear

taking advantage of the
communication subnet's sorting capability.
The parallel computing model does not
make any unrealistic assumptions such as
ignoring the context switching time and
the communication overhead, In Section 2,
We detail the BMLMA
protocol. In section 3, the parallel sorting

algorithm is presented. In section 4, a

communication

computer simulation result is presented
which confirmed the superlinear speedup
of an optimal serial sorting algorithm.

Conclusions are drawn in section 5.

2 BMLMA Protocol

The basic Binary
Multi-Level (BMLMA)
communication protocol is to organize the

principle of the
Multi-Access

-304-

cycle 1 2 3 4 5 6 7 8
Bus 0O 0 01 0 0 1 1
* *
Contending 1 1 1 2 1 1

Processors 2 2 2 3 3

3 3 4 4

4 4

Processors

1

2

3

4

w
w
w
> w *x O
w
w
w
w

Data Value

3(0011)
1(0001)
5(0101)
4(0100)

* The underlined processor indicates the processor which has successfully sent data

figure 1: An example of the BMLMA protocol

processors as an n-ary tree (multi-level)
the access priority
accordingly (multi-access). In BMLMA,
the processors are contenting for the
global channel with the data at the bit
Thus,
protocol statement, we need the following

and to assign

level. before proceeding to a

assumptions.

2.1.
synchronized with the channel clock (time
slot). This can be achieved either
with a global clock of in a distributed
manner. At the Allied-Signal Aerospace
Technology Center, we have successfully
built a distributed bit synchronizing circuit

Processors are perfectly

operating up to 10 M Hz.

2.2. If all processors sent the same
value, 1 .e., either logical 1 or 0O, at the
same time slot, the channel stays in

the same value. If some processors send
logical 1 and the others send 0 at the
same time slot, the channel stays in the
This be
using pull-up

priority value.
physically implemented
resistors and open collector buffers. The
condition would be the high state
when the transistor is off,
state would be the high state when the

higher can

null
and ground
transistor is on. In this scheme, if
we assign 0 for the low state (ground)
and 1 for the high state (null), the value 0
will have high priority.

2.3. A processor can send a bit of data

and listen data and listen back to it,
overlapping with the values of other
processors, within a time slot (one

channel lock cycle). This assumption limits
the the
propagation delay must be less than one

channel speed. In general,
third of a time slot. For example, if the
clock speed is 10 M Hz, the maximum
interprocessor distance is 10 m. This is
not a major problem for a parallel
computer since the processors are closely

clustered together in a single cabinet.

2.4. Processors can detect the status
(busy or idle) of the channel. This can be
the bit stuffing

technique similar to those implemented in

effectively done using
packet switch networks [14]

2.5. processors can detect the end of a

message. This can be physically
implemented either by using a fixed length
message or by using a special flag

indication the end of a message.

The basin Operation of the BMLMA
protocol is as follows. If a processor
wants to send a message, it transmits one
bit at a time as soon as it senses that the
channel is idle. To avoid conflicts, a
processor always listens to the channel
right after transmitting a bit of data. If it

-305-

1/0 Devices

Front-End

Global-Bus
eeoo0coeoe | P,

Parallel Computer

>

Figure 2: A parallel computer model

detects that its 1 bit has been overwritten
with a O bit, it aborts its transmission
until the end of the winner's transmission.
At the end of the winner's transmission,
the aborted processor immediately
transmits the 4 processors sending the
values 1, 3, 4, 5. As shown in Figure 1,
the messages are transmitted in an
ascending order.

It is easy to show that the algorithm is
non-blocking. Since a processor is
allowed to attempt to transmit data only
when it detects that the channel is idle,
there can be two groups of processors
ready to send data: those in the current
bucket and those in the next bucket.
Processors in the current bucket are the
processors which originally attempted to
transmit data and aborted the
transmission. Since there can be only a
finite number of processors in the current
bucket, they are guaranteed to transmit
data in bounded time. Processor which
become ready to transmit data during the
transmission of the current bucket become
the next bucket. At the end of the
transmission of the current bucket and
an idle period, the next bucket become a

current bucket.
3 Sorting Algorithm

The definition of speedup, &,, in

evaluation a parallel algorithm is

g = time (best serial algorithm.) RS
" time(parallel algorithm)

Unfortunately, the best serial algorithm is

rarely known. However, the time
complexity Of the optimal serial sorting
algorithm wusing only comparison and
interchange operations is known to be O
(nlogn) where n is the number of
elements to be sorted. Thus, sorting is
one of a few algorithms which may be
used for proving that superlinear speedup
is possible.

In general, a parallel computer is used
in conjunction with a front-end computer
in Figure 2. The

computer in this paper is based on a

as shown parallel

loosely—-coupled

parallel computer where multiple
processors with their own local memory
are inter-

connected by a communication network
(global-bus). The
loads the program and the data into the
After the

computer completes the processing, the

front-end computer

parallel computer. parallel
results are loaded back to the front-end
computer. Thus, our parallel sorting model

assumes that the unsorted data is stored

-306 -

in the front-end computer and the sorted
data (result) will be loaded back into the
Then a

consist

front-end computer. parallel

sorting algorithm may of four
phases: distribution, local sorting, global
sorting, and output.

In the distribution phase, the unsorted
data in the front-end computer is divided

into n equal size segments. A segment is
then assigned to each of the n processors

of the parallel computer. Each processor
sorts its segment independently of the
other processors in the local sorting
phase. After the last processor finishes its
local sorting,

the n distributed sorted segments are

sorted (merged) into a single global order
in to the front~end computer. Some of
these phases many be combined or
overlapped.]
For example, our parallel sorting algorithm
combined the global sorting phase and the
output phase.

Our algorithm is based on
divide-and-conquer strategy. The parallel
computer consists of 7 processors and

global bus whose the communication
protocol is based on BMLMA. However, to
achieve global sorting, a processor which
has successfully transmitted an element
immediately contends for the global bus
with its next data element instead of
becoming a next bucket as in the original
protocol. We call this communication
method block transmission model[9]. It is
easy to see that the front-end computer
will receive globally sorted data because
the smallest data element remaining in the
processors will always be transmitted to
the global bus. Thus, the
combines the global sorting and the output
initiated by the

computer but dividing the

algorithm
phases. sorting is
front-end
size data

unsorted data into n equal

segments and sending them to n

processors. Since each processor receives
its data segment one at a time from the
front-end computer, there is no contention

Each
processor locally sorts its data segment

problem for the global bus.

‘concurrently, immediately after receiving

its data segment. Thus, initial data loading
and some of the local sorting are

pipelined. Each processor reports the
completion of its local sorting to the
front-end computer. After all processor
have completed their local sorting to the
requests that the

front-end computer

locally sorted data segments from all
processors be sent to the front-end
Since the

protocol performs global sorting as well

computer. communication
as the transmission of data segments from
all processors to the front-end computer,
the front-end computer will receive
globally sorted data

We can summarize the algorithm as
follows:

Parallel Sorting Algorithm.

1. The front-end computer divides the
m data elements into n equal size data
segments (m; : i = 1 to n) Assign

m; to processor ;.

2. Processors perform local sorting
concurrently as soon as they received the
data segment, and inform the
front-end computer of the completion of
local sorting.

3. After all processors have completed
their local sorting, the front-end computer
requests the transmission of locally
sorted segments. Processors transmit
locally sorted segments using the
BMLMA block node protocol.

The time complexity of the algorithm
can be calculated as follows. Let t, be the
time to transmit an element of data. Since
the total number elements of the data is
m, the total time to load the data to the
parallel computer, 77, is

T,=m- t,.

The time required for local sorting
for processor i, L, is

-307 -

m

L£=ti. .
n

log(%)

Where t; is a coefficient which depends
on the speed of the processors and the
sorting algorithm employed. Even with
the same processor and algorithm, f¢;

varies with the data being sorted.
However, for a large volume of data, it
is expected that ¢, converge to the
average value (t,). Since global sorting
cannot begin until all processors have
completed local sorting, the time
required for local sorting, 75, is

T,=MAX({E :i=1 to n),
or for a large volume of data,

m-lo(ﬂ)
n S

where t, is a constant dependent

I.é:ts .

upon the speed of the processor and
the sorting algorithm employed.
The time required for the output

procedure, 7, is identical to that of
the initial loading(7}). Thus, the total
time required for parallel sorting, T,
with n processors is

Y]
S, becomes greater than n when

2enet,—t, »logln) <O.

Or

t

Lo logvn (5)
t 2n

8

For a 16 processor system, we can

atchlevle superlinear speedup when

?:~< 6 For a 1000 processor system,
. .t

the relationship 1s Z< 100"

In a practical system, t,s much smaller
than t, For example, for a typical system
operating at 100 MHz channel speed with
an element consisting of a 32 bit key field
and a 32 bit index field, ¢, is 0.64 pus,
regardless of the size of data. The
simulation results showed that ¢, of a

computer used is 8.1 us using an internal
sorting algorithm,

Quicksort. Thus, it is possible to achieve
superlinear speedup of a serial sorting
algorithm for up to 32 processors even
with an optimal internal sorting algorithm
with this processor. However, ¢, is
expected to be substantially higher for
external sorting algorithms due to slow
/O operations.

T=Ty+ T+ T, =2+ m« t,+1, « ': . log(L:—).

(2)
T, and T; are serial parts of the

algorithm which cannot be parallelized.
The time required for a serial sorting
algorithm using a single processor, T,
is

T,=t, » m » log(m) (3)

Using Equation (1), the speedup of the
parallel sorting algorithm is

T,
T,
Form Equation (2) and (3), we have

S, =

t, o1
s s log(m)

ﬂ:n-

4 Results

The parallel sorting algorithm has been
simulation assumes the
100 MHz and the
element of data consists of a 32 bit key
field and a 32 bit index field. An internal
sorting . algorithm, Quicksort, has been

simulated. The

channel speed is

written. The program first creates an
internal data table by generating 32 bit
random numbers and them sorts them
using the Quicksort algorithm in [11]. The
program only calculates the CPU time
required to sort the table. The elapsed
sorting time

time may be the actual

t, » log(m)+(2 « n«t,—t, « log(n)| observed by the user and is substantially

~308 -

. CPU time t,
No of items
(seconds) (u seconds)
10,000 0.075 7.5
100,000 0.8 7.6
200,000 2.15 7.7
500,000 7.3 7.8
1,000,000 13.5 8.0
Table 1: Simulation results of t,.
total sorting time
No of processor speedup
(seconds)
1 13.54 1
2 6.11 2.21
5 2.3 6.23
10 0.99 13.64
50 0.17 82.26
100 0.08 177.45

Table 2: The speedup of the parallel sorting algorithm

than the CPU time; thus, the
elapsed time can provide better speedup
than the CPU time (see Equation (5)).

larger

However, the CPU time is used to
calculate the speedup of the parallel
sorting algorithm in this simulation

because the elapsed time depends too
much on the configuration of a simulation
computer such as memory size.

We

simulation results by assuming that the

have calculated ¢ from the

sorting time is t, « n * log(n). As shown
in Table 1, t, is relatively constant (7.5 to
8.0 us) for the wide range of data sizes.
still increases with the size
of the data set. the

average computing time for Quicksort is

However, t

5

In other words,

very close to O(n log n),
but it is

although this may be insignificant for

a little worse than O(n log n).

the
the simulation showed that

analyzing sorting algorithm
theoretically,
its effect for a practical sorting algorithm
is very significant. For example, using
Equation (5) and ¢, =8.0us, it is possible
to achieve superlinear speedup only up t
32 processors. However, simulation results
showed that it
superlinear speedup with more than 100
processors as shown in Table 2. We
that the

simulation result of superlinear speedup of

is possible to achieve

believe this is first known

any algorithm. There is a sorting
algorithm which can theoretically achieve
linear speedup for a small number of
Baudet
proposed a parallel sorting based on the
f15]
the
asymptotic speed-up ratio of the parallel

the

pProcessors. and Stevenson

generalized odd-even transposition.
They have shown that theoretically,
optimal sequential

algorithm over

-309-

algorithm is the number of processors
when the number of processors is smaller
in order of magnitude than
log(number of elements). However, the
speed-up ratio decreases rapidly with the

increase in the number of processors.

5 Conclusions

We have presented a parallel sorting
algorithm which takes advantage of the
BMLMA

sorting

sorting capability of the

communication protocol. The
algorithm is based on the

divide—and-conquer strategy. However,

locally sorted segments ore merged
together using the global bus.

A parallel computer is a set of n
processors and a communication subnet;
thus, it is possible to achieve superlinear
speedup of an optimal serial algorithm by
taking advantage of the processing
capability of the communication subnet.
We have shown that the new parallel
sorting algorithm can achieve superlinear
speedup. Computer simulation has
confirmed the analytical results.

For brevity, we have presented only
the BMLMA communication protocol but
there is another protocol called CITO [12]
which provides not only sorting of data
but also data compression; thus, it has the

potential to provide even better speedup.

References

(1] Knuth, D. E,, "The Art of Computer
Programming: Sorting and Searching" , Vol
3, 2nd ed, 1998, chap. 5.
Addison-Wesley.

[2] E. E. Lmd, "introduction - Sorting",
IEEE Trans. Comput., VOI. C-31, No. 4,
Apr. 1985, pp. 293-295

[3] Yijie Han, "Deterministic sorting in
O(nlog log n) time and linear space",

Proceedings of the thiry-fourth
annual ACM symposium on Theory of
computing, May 19-21, 2002,
Montreal, Quebec, Canada

[4] Thomas Nolte, etc, "Using
bit-stuffing distributed in CAN analysis",
IEEE Real-Time Embedded
Systems, Dec 3, 2001

[5] D. Rotem, N. santoro, and J. B.
Sidney, "Distributed Sorting", IEEE Trans.

Comput., Vol. C-34, NO. 4,
Apr. 1985, pp. 372-376

[61] S. Zaks, "Optimal Distributed
Algorithms for Sorting and Ranking”,
IEEE Trans. Comput., Vol. C-34,

NO. 4, Apr. 1985, pp. 376-383

[7] Krishna P. Mikkilinent and Stanley
YW. Su, "An Evaluation of Sorting
Algorithms for Common-Bus Local
Netwarks", J. Parallel and Distributed
Computing 5 1988, pp59-81

[8] D. Parkinson, "Parallel efficiency can
be greater than unity", Parallel Computer.
3, 1986, pp261-261

[9] You-Keun Park, "The CITO Block
Transmitter”, Allied-signal ATC, Invention
Disclosure 450-87-011, 1987

[10] V. Faber, OM. Lubeck and A.B.
white,Jr., "Superlinear speedup of an
efficient sequential algorithm is
not possible", Parallel Comput. 3, 1986,
pp259-260

[11] Ellis Horowitz and Sartaj Sahni,
"Fundamentals of Data structures”,
Computer Science Perss, 1982

[12] Simon Y. Berkovich and Colleen
Roe Wilson, "A Computer Communication

Technique Using
content-Induce Transaction Overlap", ACM

Trans. On Comput., Vol. 2, No. 1,
February 1984, pp. 60-77.
[13] E. H. Rothauser and D. Wild,

"MLMA - A Collision-Free Multi-Access
Method",

Proc. to 1977 IFIP Congress, 1977,
pp. 431-436

[14] S. Berkovich, et all, "Distributed
Associative Processor" submitted to 1989
ACM Computer Science
Conference, Louisville, kentucky, February,

1989

[15] G. Baudet and D. Stevenson,
"Optimal Sorting Algorithms for Parallel
Computers”, IEEE Trans. On
Comput., Vol. C-27, No. 1, jan. 1978, pp.
84-87

-310-

