Chemical states of amorphous and crystalline Ge₂Sb₂Te₅ by using high-resolution XPS with the syncrotron radiation <u>이영미</u>^{1*}, 정민철¹, 김형도¹, 신현준¹, 김기홍², 정재관², 박주철², 구봉진³, 하용호³ ¹포항가속기연구소, ²삼성종기원, ³삼성전자 * E-mail: leemee29@postech,ac,kr Ge₂Sb₂Te₅ (GST) was investigated to find difference of chemical states between amorphous GST (a–GST) and crystalline GST (c–GST) by using high–resolution x–ray photoelectron spectroscopy (HRXPS) with synchrotron radiation. To remove the native oxide layer of 20 nm thickness in a–GST, which was performed by Ne⁺ ion sputtering at the beam energy of 0.6 kV for 1 hour. And then c–GST was obtained from the clean a–GST after annealing at 180 °C for 30 minutes in UHV. The crystalline structure of GST was confirmed by XRD and HRTEM. Chemical states of a–GST and c–GST were confirmed by core–level spectra of the Ge 3d, Sb 4d, and Te 4d by using HRXPS. We assume that the fine difference of chemical states between a–GST and c–GST is due to the atomic structure. ## 참고문헌 - 1. Z. Sun, J. Zhou, R. Ahuja, Phys. Rev. Lett. 96, 055507 (2006). - 2. M. H. R. Lankhorst, B. W. S. M. M. Ketelaars, R. A. M. Wolters, Nature Materials, 4, 347 (2005). - 3. A. V. Kolobov, et al., Nature Materials, 3, 703 (2004).