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Abstract

This paper presents a novel signal tracking algorithm for GNSS receivers using a MLE technique. In order to
perform a robust signal tracking in severe signal environments, e.g., high dynamics for navigation vehicles or weak
signals for indoor positioning, the MLE based signal tracking approach is adopted in the paper.

With assuming white Gaussian additive noise, the cost function of MLE is expanded to the cost function of NLSE.
Efficient and practical approach for Doppler frequency tracking by the MLE is derived based on the assumption of
code-free signals, i.e., the cost function of the MLE for carrier Doppler tracking is used to derive a discriminator
function to create error signals from incoming and reference signals. The use of the MLE method for carrier tracking
makes it possible to generalize the MLE equation for arbitrary codes and modulation schemes. This is ideally suited
for various GNSS signals with same structure of tracking module. This paper proposes two different types of MLE
based tracking method, i.e., an iterative batch processing method and a non-iterative feed-forward processing method.
The first method is derived without any limitation on time consumption, while the second method is proposed for a
time limited case by using a 1st derivative of cost function, which is proportional to error signal from discriminators
of conventional tracking methods. The second method can be implemented by a block diagram approach for tracking
carrier phase, Doppler frequency and code phase with assuming no correlation of signal parameters. Finally, a state
space form of FLL/PLL/DLL is adopted to the designed MLE based tracking algorithm for reducing noise on the
estimated signal parameters.
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1. Introduction

Conventional tracking methods widely used in hardware-based
GNSS receivers such as Phase Lock Loop (PLL), Frequency
Lock Loop (FLL) and Delay Lock Loop (DLL) use a feed
forward filtering approach and have a limited performance in
high dynamic or weak signal environments [1,2,3].

Recent signal processing technology makes it possible to use a
Software Defined Radio (SDR) approach in designing a GNSS
receiver with a commercial purpose microprocessor. This
provides a flexible and a very easy design method to use a
sophisticated mathematical algorithm for the improved signal
tracking in a GNSS receiver.

The Maximum Likelihood Estimation (MLE) approach, which
is based on the premise that over a sufficient short observation
interval the signal parameters may be viewed as unknown
constant quantities, is known to yield the best performance for
the GNSS signal tracking [3,4,5]. That means for time-invariant
systems with stationary noise processes and constant parameter
vector, the MLE approach provides the following desirable
properties for the GNSS signal tracking as time goes to infinity:
consistency, unbiasedness, normality, and efficiency, i.e.,
achieving Cramer-Rao bound of estimation error variance [6].
Therefore, in order to track the GNSS signal in such a severe
signal environments, the use of MLE based signal tracking
method is preferable.

This paper presents two types of MLE based GNSS signal
method, i.e., an iterative batch processing method and a non-
iterative feed-forward processing method. A log-likelihood cost
function proposed in Ref. 4 and 5 is reviewed and also used to
derive solution algorithms for GNSS signal parameters with a
very well understandable mathematical manner. Also this paper
shows a quadratic cost function of Nonlinear Least-Squares
Estimation (NLSE) for the GNSS signal parameters is equivalent

to the cost function of MLE with a white noise assumption on
the received signals. Using an assumption of code-free signal, a
solution method which uses the Doppler frequency as a state
variable is provided for efficient computational processing. For
more improvement of computational performance, this paper
expands the MLE method to a non-iterative form of solution by a
feed-forward approach. This method can be ideally suited for the
hardware-based correlator implementation. In order to mitigate
noise effect on the estimated signal parameters, a four state fixed
rate optimal filter which uses the code phase, the carrier phase,
the Doppler frequency and the rate of Doppler frequency as state
variables is designed.

2. MLE for GNSS Signal Tracking

The MLE algorithm is derived based on the premise that over
a sufficient short observation interval, e.g., a coherent integration
time interval, the GNSS signal parameters may be viewed as
unknown constant quantities and the MLE of those parameters
yields the best performance in terms of minimum noise and no
loss-of-lock.

2.1 Signal Models

For a visible GNSS satellite, the received IF signal at the end
of GNSS receiver’s RF frontend is modeled as [1]

r(t) = A(t)-C(t —7)- D(t —7)-cos(2z(f + £, )t + ¢)+n(t) (1)

where ,(7) is the received IF GNSS signal at the end of the RF
frontend at time ¢, 4(r) is the signal amplitude, C(¢) is the
PRN (or BOC) code sequence for GNSS, D(r) is the
navigation data bit, ,(r) is the thermal noise, r is the code



delay time in seconds, s, is the carrier Doppler frequency shift
inHz,and ¢ is the carrier phase in radian.

With assuming the navigation data bit does not change in the
coherent integration time interval, we use the received signal
model in Eq. (1) in order to apply estimation technique for
tracking GPS signal given by

r(k) = A-C(k —7)cos2aT(f . + £, )k + )+ n(k) » )

where T represents the sampling time interval in second and the
signal parameters (4,7, f,,¢) are assumed to change slowly

enough to be considered unknown constants over any
observation interval.

In order to estimate signal parameters in Eq. (2), the
conventional tracking method widely uses a 2nd order FLL for
Doppler frequency tracking, a 3rd order PLL for carrier phase
tracking and a carrier aided 1st order DLL with narrow
bandwidth for code phase tracking [1,2,3].

2.2 MLE Cost Function [4,5]

The joint probability density of the 1st N complex samples
conditioned on the signal parameters can be expressed as

plry | 4,7, 115 4) E(mvl(]y,eXP[—]\z(ﬁw _”;N)TW(FN _”;N)] ®)

where Fy :{r(o),,»(l), ,,,,,, ,r(N_l)}T is a given N-dimensional
observation vector, 7 is the weighting matrix for ,, and N,/2

represents the two-sided power spectral density of the noise n(k)
in Eq. (2).

The best estimator of the signal parameters based on the
observation vector Fyo i.e., the limit of an infinite number of

samples, with a Gaussian noise assumption are obtained by
simultaneously maximizing the joint conditional probability
density function in Eq. (3). This is the MLE where a Minimum
Variance Unbiased Estimate (MVUE) with the Cramer-Rao
lower bound is achievable. The computation of the joint
probability density function in the above equation is very
difficult, because the measurements are correlated, i.e., the joint
probability density function cannot be expressed with the product
of individual probability density function. Fortunately, because
the measurements and the innovations are causally invertible and
the innovations are all uncorrelated, the log-likelihood cost
function of the joint probability density function in Eq. (3) is
defined using an assumption on the scalar weighting factor for
each measurement as

L(A,r,fd,¢|rN)E—NLNZWk‘r(k)—I:(k)‘Z . )

Thus, the MLE of the signal parameters are obtained by
maximizing the log-likelihood cost function in Eq. (4) based on
the observation vector ., satisfying

oL@1ry) _, (5)
20

where ¢ represents the signal parameter vector (=[ 4,7, 1,,4]")-

Substituting Eq. (2) to Eq. (4) and simple manipulating based
on the assumption on the unity scalar weight factor (w, =1)

yield

NoL(A . £, 81) =2 (0 = B cos' e (e + 7k +4) (g
+ ZI?INiir(k) Clke— f)cos(zzzT(f,F + )k + ;3)

With assuming x> (£, + £,)™* the 2nd component of the right

side can be as ¥z . Thus, the 1st

> COSZ(Zﬂ'T(f”_- + f )+ ﬁ)z NI2
k=0

and the 2nd components on the right side have a constant value
(no information on the signal parameters) and only the 3rd term
on the right side has signal parameter components @, i.e., 4,
T, fd and 42 as variables explicitly. As a result a MLE of 0

in Eq. (6) can be obtained when the 3rd component on the right
side in Eq. (6) is maximized. Note that the 3rd component on the
right side is a product of incoming and replica IF signals. This is
why we can use a mixer operation (multiplication) to track
GNSS signals [7].

The 3rd component of Eq. (6) can be rewritten as

Z,Zfr(k).C(k—f)cos(ZﬁT(f,F +f, )k+¢3): -

24 Re{exp(jngS)Nzlr(k) Clk - ?)exp(ZﬂT(f,F +f, )k)}.

k=0

Without any doubt, for any complex z, Re{exp( j¢)z} is
maximum with respectto 4 when ¢ =—arg(z). Thus, the MLE
of ¢ istherefore

R AN
¢=—arg{zAZr(m-c<k—r)exp(12nT(f,F+fd)k)}~ ®)
k=0
Substituting ¢§ in Eg. (8) into Eq. (6), differentiating with
respect to A and equaling to zero yield a MLE of 4 given by

i=2
N

fr(k)vC(ka)eXp(jZﬂ'T(fH: +fd)k* 9

k=0

Substituting the results in Egs. (8) and (9) into Eq. (4) yields a
new two-dimensional MLE cost function for z and £, given

by

SRl - )exp(2a (e + f)8) -+ (1O

k=0

L fi17) =5

0

The above equation is similar to the square of the amplitude of
the discrete Fourier transform on ,(k)C(k—1) scaled by 1/N,
and can be also expanded to the sin-cos form using the
relationship of exp(;6) =cosd+ jsing as

ICVATOR ;{Er(k)cac —)cos@AT (/s +fd)k)} w

0 (k=0

o Srwcu- s, 10}

0 (k=0

The above equation simply means that the two-dimensional MLE
cost function for z and s can be expressed with the sum of



the In-phase (I) and the quad-phase (Q) components which is
similar with the conventional correlation function except for the
initial carrier phase. In Egs. (8), (9) and (11), the unknown signal
parameters ¢ and A4 are nuisance parameters that must be
estimated simultaneously with the desired parameters z and
£, - As aresult, the primary measurements of GNSS receiver can

be regarded as the carrier phase, the Doppler frequency, code
phase and signal-to-noise ratio.

2.3 NLSE Cost Function

A direct approach for obtaining signal parameters is obtainable
to choose them so as to minimize the weighted sum of squared
errors for 1st N complex samples expressed by

J(AlTVfd’¢):(rN_’:N)TW(rN_EN)' (12)

This is a quadratic cost function of the NLSE for errors and the
NLSE of the signal parameters are obtained by minimizing this
quadratic cost function based on the observation vector . . With

assuming a unity scalar weight factor such that , — 1/0’?(“ =1,

the quadratic cost function of NLSE in Eq. (12) can be rewritten
as

e [ = S0 -0 [ty

Obviously the assumption of a unity scalar weight factor for the
received IF GNSS signal is reasonable in case of additive white
Gaussian noise. Therefore, the minimization problem of the
quadratic cost function of NLSE in Eq. (12) is equivalent to the
maximization problem of the log-likelihood cost function of
MLE in Eqg. (4). As a result, the above equation can also be used
to estimate signal parameters as similar way to the MLE except
for the minimization criteria satisfying

aJ(6) —0 (14)
06

The use of Jaccobian matrix based on this equation makes it
possible to take a faster NLSE solution algorithm compared to
the MLE (we describe it in a later section).

3. Practical Approach to MLE with Code-free
Assumption

The MLE cost function in Eq. (11) contains the discrete nature
of code signal and does not satisfy the convexity property of the
continuous time function for all range of code delay values.
Assuming the estimate of ¢ available from a conventional DLL
such that C(k—7)C(k—7)~1 for a small code delay estimate

error, we can obtain the code free signal model given by

(k) =r(k)-C(k-7) (15)
=cos(2aT(f} + f, )k + @) +n(k)

where 7 (k)=n(k)C(k—7) and 7(k) denotes the code-free

signal.
Assuming the initial carrier phase ¢4 known, a new MLE cost

function of the code-free signal, i.e., known £, is given by

L(fd |rN) Z;{Zl’(k) COS(Z”T(f/F +fd)k)} (16)

0 k=0

1 (¥ ) 2
+{Zr(k)sm(27zT( S+ fd)k)} :

No k=0
Assuming that code synchronization and dispreading are
performed prior to carrier phase tracking since sufficient signal-
to-noise ratio is necessary for the DLL to operate successfully,

we can use the above cost function to derive the MLE algorithm
for tracking the carrier Doppler frequency.

The reason why we can use the code-free assumption on the
MLE is as follows: For the code tracking, the carrier aided 1st
order DLL is widely used successfully since the DLL
measurement is only used to remove long term bias. Also, a quite
small bandwidth can be used for the DLL because the receiver
motion is captured by the measured change in carrier phase, i.e.,
the Doppler frequency. A well-designed carrier tracking loop
contains a PLL which is assisted by a FLL because the FLL is
less sensitive than the PLL and provides us with more robust
tracking performance. As a result, the code phase can be
successfully estimated by using a carrier-aided DLL and also can
be assumed to be known, i.e., if the Doppler frequency is well
tracked, the code phase is considered as a known value because it
is directly obtainable by integrating the Doppler frequency.

4, Solution Methods for MLE

Because the signal parameters are located in the cost functions
in Eq. (4) and (13) with a complicated nonlinear manner, no
simple close form solution is possible. The one way to obtain the
MLE is the estimation technique by means of mathematical
programming with iterative approach, e.g., Levenberg-Marquardt
method or NLSE method. The other way is given from a tracking
technique with non-iterative approach by feed-forward manner
directly using a gradient assuming no coupling between signal
parameters.

4.1 Iterative Batch Solution Methods

Levenberg-Marguardts method

The Levenberg-Marquardt method is known as the most
effective optimization method to determine the MLE [6]. This
algorithm requires the computation of the gradient as well as the
Hessian matrix of the log-likelihood function given by

0t =0i, —(H,+D)*G,, fori=041,.. 17)

where g, is the 2-by-1 MLE state vector (=[r, £,]"), G; and

H; are the 2-by-1 gradient vector and the 2-by-2 pseudo-Hessian
matrix, respectively:

G - [6L(9 I Z)J (18)
: 0 |,
2
u -|2Le12) (19)
06 0=0'
a G
with oL | o7 and L | ort  odf, (20)
00 | oL 007 | oL &L

Ya o,or off



and D; is a diagonal matrix chosen to force H; + D; to be positive
definite so that (f,+D,)™ will always be computable, and i

represents the iteration index. Detailed expressions for Eq. (20)
are given as follows:

%: —2{;r~C~cos}x{;r-C’~cos} 1)
—Z{Zr~C~sin}x{ZrC'~sin}
6L 747[7{2!’ C- COS} {Zr-C-k-sin} (22)
+4;rT{Zr~C-sin}x{Zr-C~k~cos}
%: Z{Zr-c’~cos} +2{ZrC’~sin}
+2{Zr~C~COS}X{Zr~C"COS}
+2{Zr~C~sin}x{2r~C"sin}
— = 87 TZ{ZI -C-k- sm} +87°T {ZI" C-k- COS}
(24)
+87T2T2{Zr-C-COS}X{ZV-C-/{Z-COS}
-87°T? Zr‘C‘sin}x{ZrC%z-sin}
661;2 = 471T{;r-C~k-Sin}x{;r-C"COS}
+4ﬁT{Zr~C'~k~sin)}x{2r~€~cos} (25)
—4ﬁT{Zr-C-k-COS}X{Zr-C'-Sin}
—471'T{Zr‘C'~k‘COS}x{Zr~C-Sin}

_ oL
o, 0t

(23)

where sin =sin(227(f,, + £, k)
cos = cos(22T(f + £, )k)
C=C(k-1),
C'=Ck-1),
C"=C"(k-7),
r=r(k),

CEMICE

The 1st and 2nd derivative of the delayed code C(k-7) with
respect to ¢ is obtained from the Early and Late arm given by

C'llk-7)= L(g; ) (26)
. Clk—t-dI2)-Clk—7+d12)
d
C'(k-1)= % (27)

where d represents correlator spacing of Early-minus-Late codes
in chips and also in practice can be set go to zero.
The procedure of the Levenberg-Marquardt algorithm is as

follows: Initial values for #° must be specified and matrix D,

should be initialized to a diagonal matrix. The Levenberg-
Marquardt algorithm corrects its state using Eq. (17) and the
MLE cost function L(g""+1 | Z) is compared with the previous

cost function to increase p, and try again or to check

convergence. By accepting o only if L(él|z) zL(él’1|Z),
we guarantee that each iteration will improve the likelihood of
our estimates. This iteration is terminated when the change in
L(é“ | z) falls below some predefined threshold.

The carrier phase is obtained by the MLE solution equation for
¢ in Eq. (8) where the estimate of carrier frequency is

integrated by iterative manner as
¢3"*1 _ éi +5¢? (28)

where 5(,5 denotes the carrier phase difference between the

incoming and the replica IF signals at each iteration which is
given by arctangent of Q over I.

For an example of the carrier Doppler frequency error in GPS
L1 CA code signals, the cost function in Eq. (16), the gradient
function in Eq. (18) and the pseudo-Hessian function in Eq. (19),
can be normalized as depicted in Figure 1. The cost function has
a bell shape between approximately +900 Hz and has a
maximum value at the zero Doppler frequency error. For the
smaller Doppler frequency error, the gradient value becomes
smaller while the pseudo-Hessian value becomes larger. It means
that the correction to the next step, i.e., (H, +D1-)71G1-' in Eq.

(17) becomes smaller and results in a fine convergence. In
contrast, for the larger Doppler frequency error, the correction
becomes having larger value. This makes it possible for the
estimator to converge fast to the true value. By choosing the D;
to force H; + D; to be positive definite at every iteration, we can
control the convergence speed of the estimator.

| | |
| | L |
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Doppler frequency Error (Hz)

Figure 1 Graphical description on Levenberg-Marquardt
method for Doppler frequency estimation

Assuming the code phase ¢ is available from a conventional
DLL, i.e., code-free signal model, substituting the efficient cost



function for code-free signal in Eq. (16) into Egs. (22) and (25)
yields a scalar (1-by-1) gradient and Hessian only in terms of
Doppler frequency f; given by

oL

7" —4;TT{;r . cos}x {Zr -k ~sin} (29)
+4ﬂT{;r~sin}x{;r-k ~cos}

% —8ﬂ2T2{;r~k~sin}z +8ﬁ2T2{;?~k~cos}

—8;12T2{;f . cos} x {;f e ~cos}

_8”2T2{A2r -sin}x{;rkz ~sin}

2

(30)

where 7 =7 (k).

This new solution does not require the redundant calculations on
the gradient and Hessian for 7, i.e., the gradient and the Hessian
become a scalar. So, the computational load for this case is less
than the case before.

NLSE method
From Eqg. (2), the nonlinear signal model for N-dimensional
observation vector can be written in a vector form given by

Z=hy,(0)+n, (31)

where Z is the N-by-1 IF signal measurement vector,
[r0),....r (N -1, n, is the N-by-1 measurement error vector,

[n(O), ,,,,, ,n(N_l)]T, and 5, (¢) is the N-by-1 nonlinear signal

model.
Linearizing the Eq. (31) about nominal value ¢*(=[z", £;1")

yields a linear measurement equation given by
8 =H-60+7, (32)

where 57 =[&(0),......, (N -1)]" .
(k) =r(k) -7 (k)
(k) = AC(k —7)cosQRaT (f,. + f,)k+) »
or(0) or(0)

= (9) _ or of; |, (Gaccobian)
20  |ar(N-1) ar(N-1)
or o,
50 =[57,5(1

and the elements of Jaccobian matrix are given by

oK) _ ~C'-cos (33)
or
K __orrC ke -sin (34)

Jd

where sin =sin(22T(f, + f, )k +¢)
c0s = cos(22T (f, + £, )k + p)-

The solution of Eq. (31) can be obtained by the iterative least-
squares technique by using Eq. (32) described in the following

equations [6]

s0=H"H)*H"8Z (39)
0" =0 +50' (36)

Detailed expressions related to the Jaccobian matrix are given as
follows:

or(0) or(0)

o0  or(N-D)

HTH = ot ot 621 5./:,1
or@ . IN=Dlan-1 a-1| (37)
o, o, or o,

ar(k) Y’ or(k) or(k)
IR C s
or(k) or(k) or(k) )

s 3%

[ or(0) a(N-DT &0

T 0 0 .

H' & =] 50 aN-n| 28
Lo, o, JEOED 9
X0
> x|

Substituting Egs. (33) and (34) into Egs. (37) and (38) yields
final results as:

> C"*-cos? 22T k-C-C'-cos-sin

(39)

H'H = g k
22Ty k-C-C'-cos-sin 47Ty k? -sin?
k k
- C'-cos &(k
I ) © (40)

= .
—22T Y k-C-sin- (k)
k

Since the matrix size of H# and &z are N-by-2 and N-by-1,
respectively, those of H'H and H's5Z becomes 2-by-2 and
2-by-1, respectively.

As in the case before, applying the efficient cost function for
code-free signal in Eq. (16) to the NLSE yields the more fast
solution algorithm since it does not require the redundant
computation of Jaccobian for the code phase 7. Thus, a matrix
computation in Eq. (35) becomes a simple scalar division and
multiplication process:

(HTH)™ :]//47rTZZk2 sin? (41)

H'SZ ==-22Ty k-sin- 5 (k) (42)

where (k) = (k) 7 (k) -

Note that the solution of NLSE is more sensitive to the accuracy
of the signal amplitude estimate than the MLE. This is because
the NLSE uses the difference of received and locally generated
signals, i.e., &(k)=r(k)-7(k) in the solution algorithm as in



Eq. (40) while the MLE uses the product of received and locally
generated signals as in Egs. (21) to (25).

4.2 Non-iterative Feed-Forward Solution Methods

Non-iterative solution for MLE is obtainable directly from the
log-likelihood cost function of the MLE in Eq. (4). As mentioned
before, with same assumption on N as in Eqg. (6), the
maximization or the minimization problem of the cost function
becomes same to obtaining @ satisfying [7]

OL@Iry) _y or YO) _. (43)
o0 00

Normally, since the signal amplitude A is easily obtainable by
using a sum of square of |1 and Q as shown in Eq. (9), 4 is
assumed to be a known parameter.

Carrier Phase Tracking Loop
Assuming the parameters of 7 and r, are known, the

gradient of log-likelihood cost function for ¢ is given by

(gfLﬁJ = —2A§r(k)C(k - T)Si”(Z”T(fur + fa)k+ ¢3) (44)
¢=4 k=0

=0

The above equation is obtained based on Single-Input-Single-
Output (SISO) system assumption, i.e., no coupling between
signal parameters, and equals to the Q value in the prompt arm of
a normal PLL.

For an example Figure 2 depicts the normalized cost function
and gradient function for GPS L1 CA signal with 1 ms coherent
integration time with respect to carrier phase error in Egs. (7) and
(44) with assuming no error (7 =0 and fd =0 Wwhere
represents the estimate error) for noise free environments. It is
easily shown in the figure that the gradient function provides a
linearly proportional value to carrier phase error which is similar
to discriminator output of PLL.

Cost function
Gradient

Carrier phase error [cycle]

Figure 2 MLE cost function and gradient function for carrier
phase error

Doppler Frequency Tracking Loop
Assuming the parameters of r and ¢ are known, the

gradient of log-likelihood cost function for ¢ is given by

@L,] :41;:TANir(k)C(k—T)ksin(zzzT(f,F + fd)k+¢) (45)
d f;;:i/ k=0

-0

Note that this is similar to the Q in the prompt arm of a normal
FLL except for the use of £ which is included for avoiding the
use of a successive carrier phase measurements to generate the
Doppler frequency error in FLL.

For an example Figure 3 depicts the normalized cost function
and gradient function of Doppler frequency error in Egs. (7) and
(45) with assuming no error (7 =0 and 5:0) for noise free

environments. It is also shown in the figure that the gradient
function provides a linearly proportional value to Doppler
frequency error which is similar to discriminator output of FLL.
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Figure 3 MLE cost function and gradient function of Doppler
frequency error

Code Phase Tracking Loop
Assuming the parameters of ¢4 and s are known, the

gradient of log-likelihood cost function for 7 is given by

(tiL] - _2A§r(k)C’(k ~7)cos(2aT(f) + f,)k+¢)  (46)

or k=0
=0

This is equal to the | value in the Early-Minus-Late arm of a
normal DLL.

For an example Figure 4 depicts the normalized cost function
and gradient function with respect to code phase error in Egs. (7)
and (46) with assuming no error (4 =0 and }d =) for noise

free environments. This is the GPS L1 CA code case. It is also
shown in the figure that the gradient function provides a linearly
proportional value to code phase error which is similar to
discriminator output of DLL. The nonlinearity in the figure
comes from discrete sampling of PRN codes.
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Figure 4 MLE cost function and gradient function for code
phase error

Block Diagram Implementations

The block diagram implementation of the non-iterative
solution of MLE for the carrier phase, the Doppler frequency and
the code phase tracking in Egs. (44), (45) and (46) is depicted in
Figure 5. Note in the figure that the Doppler frequency tracking
loop contains one more mixer for & of which integrated and

dump value is noted as Q- It seems the non-iterative solution

for MLE requires one less integration and dump process than the
conventional FLL/PLL/DLL where the | and Q values in prompt
arm for carrier tracking and in Early-minus-Late arm for code
tracking are used. But, in order to get signal amplitude 4 and to
demodulate navigation data bits, the I value in the prompt arm
should be used and the processing load of the MLE is still little
bit larger than the conventional FLL/PLL/DLL.

EML

T

cos

Carrier
NCO

Figure 5 Block diagram of non-iterative solution for MLE:
carrier phase, Doppler frequency and code phase tracking

A FLL discriminator output in a conventional FLL is calculated
by using a 1st order approximation on the frequency, i.e., a
difference between a successive carrier phase estimates divided
by the coherent integration time given by

Jaw =@ —b ) M (47)

where At represents the coherent integration time equal to the
sampling time of loop filters in seconds and a successive carrier
phases 4 and g are obtained by using arctangent function

of the | and Q values at k£ and k+1, respectively. Therefore, the
use of the successive measurements for the Doppler frequency
estimation in Eq. (47) may cause an approximation error and one
step delay effect on the estimated value while the use of the

gradient function in Eq. (45) provides the Doppler frequency
error, which is similar to FLL discriminator output, directly to
the estimator. This makes it possible to be a more robust tracking
for GNSS signals.

5. Loop Filter Implementation

In order to produce an accurate estimate of the signal
parameters from the noisy received signal at its output, a
classical approach of designing a loop filter, e.g., FLL/PLL/DLL,
which has a fixed update rate is implemented. For the robustness
of carrier tracking loops, a combination of a 2nd order FLL and a
3rd order PLL is used and their bandwidths are set to
accommodate for a given dynamic specification of receivers
based on the minimum required signal-to-noise ratio. A carrier
aided 1st order DLL with a quite narrow bandwidth is used to
track code phase. A filter equation for FLL/PLL/DLL including
code and carrier Numerical Controlled Oscillator (NCOs) is
given in a state space form as:

Tin 10rN Of 7 [N, 0 0
e
b 01 A& 0] 4 0 24w, N 0 ’
= + 2 %
J.; wa| |00 1 N fd & 0 Lllpym, A \/ErFLLwFLLAt e
Ja wal 00 0 1 ff‘}‘k 0 7 PLng’LLAt 7 FLLa)f‘LLAt h
(48)

where [z,4, f, ,j;j]T is the state vector for the code phase in

chip, the carrier phase in cycles, the Doppler frequency in Hz
and the rate of the Doppler frequency in Hz/s, respectively,

w and 4 are the natural radian frequencies of the 3rd
0,PLL 0,FLL

order PLL in rad/s and the 2nd order FLL in rad/s?, respectively,
Tou, and ry, are the weighting factors of PLL and FLL,

respectively (r,,, +r,,, =1), r denotes the scale factor converting

Doppler frequency to code chip rate which is related to the
carrier aiding to DLL , and [e .¢, e, 1" represents the DLL,

PLL and FLL discriminator outputs which are proportional to
gradients in Eqgs. (46), (44) and (45), respectively .

Discriminator outputs of the fixed rate optimal filter in Eqg.
(48) are similar to the measurement innovation process in a
Kalman filter. Thus, the Eq. (48) can be written as

6, = HA,: +K'e (49)

where e denotes a vector form of discriminator outputs and X’
represent a 4-by-3 fixed rate optimal filter gain matrix.

If we use a Kalman filter for signal tracking, it is possible to
check the resultant design matrix of the Kalman filter by
comparing the steady-state Kalman gain g and the fixed rate

optimal filter gain X' in Eq. (49). This is because if the filter is
well designed, these two gains should be same (K ~ K'). That
means the use of the state space form of tracking filters with
fixed rate and bandwidths makes it possible to use an empirical
approach for evaluating the performance of designed tracking
loops by comparing the gain matrices of the Kalman filter and
the fixed rate optimal filter.

6. Conclusion

In this paper we derived a novel signal tracking algorithm
based on MLE approach. The MLE cost function for the GNSS
signal parameters were reviewed and expanded to a various form



of solution algorithms by a simple assumption on received
signals or signal parameters. Two iterative solution methods
were derived based on the maximizing (or minimizing) problem
on the cost function. The Levenberg-Marquardt method provided
an efficient solution algorithm but requires more computational
time than conventional tracking methods. Assuming no coupling
of signal parameters, i.e., SISO system, the non-iterative feed-
forward solution method was derived based on the MLE cost
function, where the gradient function of the cost function was
used to correct errors similar to the discriminator output of
conventional tracking loops. It was also shown that the use of
non-iterative feed-forward manner to deal with received IF signal
made it possible to save the processing time. The non-iterative
feed-forward solution method was integrated with a fixed rate
optimal filter to reduce the noise effect on the estimated signal
parameters.

The presented methods will be ideally suited for improving
the performance of the signal tracking module in severe signal
environments such as high dynamics or indoor positioning.
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