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Abstract 

 
This paper presents a novel signal tracking algorithm for GNSS receivers using a MLE technique. In order to 

perform a robust signal tracking in severe signal environments, e.g., high dynamics for navigation vehicles or weak 
signals for indoor positioning, the MLE based signal tracking approach is adopted in the paper.  

With assuming white Gaussian additive noise, the cost function of MLE is expanded to the cost function of NLSE. 
Efficient and practical approach for Doppler frequency tracking by the MLE is derived based on the assumption of 
code-free signals, i.e., the cost function of the MLE for carrier Doppler tracking is used to derive a discriminator 
function to create error signals from incoming and reference signals. The use of the MLE method for carrier tracking 
makes it possible to generalize the MLE equation for arbitrary codes and modulation schemes. This is ideally suited 
for various GNSS signals with same structure of tracking module. This paper proposes two different types of MLE 
based tracking method, i.e., an iterative batch processing method and a non-iterative feed-forward processing method. 
The first method is derived without any limitation on time consumption, while the second method is proposed for a 
time limited case by using a 1st derivative of cost function, which is proportional to error signal from discriminators 
of conventional tracking methods. The second method can be implemented by a block diagram approach for tracking 
carrier phase, Doppler frequency and code phase with assuming no correlation of signal parameters. Finally, a state 
space form of FLL/PLL/DLL is adopted to the designed MLE based tracking algorithm for reducing noise on the 
estimated signal parameters.  
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1. Introduction 

 
Conventional tracking methods widely used in hardware-based 

GNSS receivers such as Phase Lock Loop (PLL), Frequency 
Lock Loop (FLL) and Delay Lock Loop (DLL) use a feed 
forward filtering approach and have a limited performance in 
high dynamic or weak signal environments [1,2,3].  

Recent signal processing technology makes it possible to use a 
Software Defined Radio (SDR) approach in designing a GNSS 
receiver with a commercial purpose microprocessor. This 
provides a flexible and a very easy design method to use a 
sophisticated mathematical algorithm for the improved signal 
tracking in a GNSS receiver.      

The Maximum Likelihood Estimation (MLE) approach, which 
is based on the premise that over a sufficient short observation 
interval the signal parameters may be viewed as unknown 
constant quantities, is known to yield the best performance for 
the GNSS signal tracking [3,4,5]. That means for time-invariant 
systems with stationary noise processes and constant parameter 
vector, the MLE approach provides the following desirable 
properties for the GNSS signal tracking as time goes to infinity: 
consistency, unbiasedness, normality, and efficiency, i.e., 
achieving Cramer-Rao bound of estimation error variance [6]. 
Therefore, in order to track the GNSS signal in such a severe 
signal environments, the use of MLE based signal tracking 
method is preferable.    

 
This paper presents two types of MLE based GNSS signal 

method, i.e., an iterative batch processing method and a non-
iterative feed-forward processing method. A log-likelihood cost 
function proposed in Ref. 4 and 5 is reviewed and also used to 
derive solution algorithms for GNSS signal parameters with a 
very well understandable mathematical manner. Also this paper 
shows a quadratic cost function of Nonlinear Least-Squares 
Estimation (NLSE) for the GNSS signal parameters is equivalent 

to the cost function of MLE with a white noise assumption on 
the received signals. Using an assumption of code-free signal, a 
solution method which uses the Doppler frequency as a state 
variable is provided for efficient computational processing. For 
more improvement of computational performance, this paper 
expands the MLE method to a non-iterative form of solution by a 
feed-forward approach. This method can be ideally suited for the 
hardware-based correlator implementation. In order to mitigate 
noise effect on the estimated signal parameters, a four state fixed 
rate optimal filter which uses the code phase, the carrier phase, 
the Doppler frequency and the rate of Doppler frequency as state 
variables is designed. 
 
2. MLE for GNSS Signal Tracking 
 

The MLE algorithm is derived based on the premise that over 
a sufficient short observation interval, e.g., a coherent integration 
time interval, the GNSS signal parameters may be viewed as 
unknown constant quantities and the MLE of those parameters 
yields the best performance in terms of minimum noise and no 
loss-of-lock. 
 
2.1 Signal Models 
 

For a visible GNSS satellite, the received IF signal at the end 
of GNSS receiver’s RF frontend is modeled as [1] 
 

( ) )()(2cos)()()()( tntfftDtCtAtr dIF +++⋅−⋅−⋅= φπττ  (1) 
 
where )(tr  is the received IF GNSS signal at the end of the RF 
frontend at time t, )(tA  is the signal amplitude, )(tC  is the 
PRN (or BOC) code sequence for GNSS, )(tD  is the 
navigation data bit, )(tn  is the thermal noise, τ  is the code 



delay time in seconds, 
df  is the carrier Doppler frequency shift 

in Hz, and φ  is the carrier phase in radian.  
With assuming the navigation data bit does not change in the 

coherent integration time interval, we use the received signal 
model in Eq. (1) in order to apply estimation technique for 
tracking GPS signal given by  
 

( ) )()(2cos)()( knkffTkCAkr dIF +++−⋅= φπτ ,     (2) 
 
where T represents the sampling time interval in second and the 
signal parameters (A,τ , df ,φ ) are assumed to change slowly 
enough to be considered unknown constants over any 
observation interval.  

In order to estimate signal parameters in Eq. (2), the 
conventional tracking method widely uses a 2nd order FLL for 
Doppler frequency tracking, a 3rd order PLL for carrier phase 
tracking and a carrier aided 1st order DLL with narrow 
bandwidth for code phase tracking [1,2,3].   
 
2.2 MLE Cost Function [4,5] 
 

The joint probability density of the 1st N complex samples 
conditioned on the signal parameters can be expressed as  
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where { }T

N Nrrrr )1(),......,1(),0( −=  is a given N-dimensional 
observation vector, W is the weighting matrix for 

Nr  and N0/2 
represents the two-sided power spectral density of the noise n(k) 
in Eq. (2).  

The best estimator of the signal parameters based on the 
observation vector 

Nr , i.e., the limit of an infinite number of 
samples, with a Gaussian noise assumption are obtained by 
simultaneously maximizing the joint conditional probability 
density function in Eq. (3). This is the MLE where a Minimum 
Variance Unbiased Estimate (MVUE) with the Cramer-Rao 
lower bound is achievable. The computation of the joint 
probability density function in the above equation is very 
difficult, because the measurements are correlated, i.e., the joint 
probability density function cannot be expressed with the product 
of individual probability density function. Fortunately, because 
the measurements and the innovations are causally invertible and 
the innovations are all uncorrelated, the log-likelihood cost 
function of the joint probability density function in Eq. (3) is 
defined using an assumption on the scalar weighting factor for 
each measurement as  
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Thus, the MLE of the signal parameters are obtained by 
maximizing the log-likelihood cost function in Eq. (4) based on 
the observation vector 

Nr  satisfying 
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where θ  represents the signal parameter vector (= T

dfA ],,,[ φτ ).  
Substituting Eq. (2) to Eq. (4) and simple manipulating based 

on the assumption on the unity scalar weight factor ( 1=kw ) 
yield  
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With assuming 1)( −+>> dIF ffN , the 2nd component of the right 
side can be as ( ) 2/ˆ)ˆ(2cos

1
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φπ
. Thus, the 1st 

and the 2nd components on the right side have a constant value 
(no information on the signal parameters) and only the 3rd term 
on the right side has signal parameter components θ̂ , i.e., Â , 
τ̂ , df̂  and φ̂  as variables explicitly. As a result a MLE of θ̂  
in Eq. (6) can be obtained when the 3rd component on the right 
side in Eq. (6) is maximized. Note that the 3rd component on the 
right side is a product of incoming and replica IF signals. This is 
why we can use a mixer operation (multiplication) to track 
GNSS signals [7].     

The 3rd component of Eq. (6) can be rewritten as    
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Without any doubt, for any complex z, { }zj )exp(Re φ  is 
maximum with respect to φ  when )arg(z−=φ . Thus, the MLE 
of φ̂  is therefore 
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Substituting φ̂  in Eg. (8) into Eq. (6), differentiating with 

respect to Â  and equaling to zero yield a MLE of A given by 
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Substituting the results in Eqs. (8) and (9) into Eq. (4) yields a 

new two-dimensional MLE cost function for τ  and df  given 
by   
 

21

00

))(2exp()()(1)|,( ∑
−

=

+−=
N

k
dIFNd kffTjkCkr

N
rfL πττ .  (10) 

 
The above equation is similar to the square of the amplitude of 
the discrete Fourier transform on )1()( −kCkr  scaled by 1/N0 
and can be also expanded to the sin-cos form using the 
relationship of θθθ sincos)exp( jj +=  as 
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The above equation simply means that the two-dimensional MLE 
cost function for τ  and 

df  can be expressed with the sum of 



the In-phase (I) and the quad-phase (Q) components which is 
similar with the conventional correlation function except for the 
initial carrier phase. In Eqs. (8), (9) and (11), the unknown signal 
parameters φ  and A are nuisance parameters that must be 
estimated simultaneously with the desired parameters τ  and 

df . As a result, the primary measurements of GNSS receiver can 
be regarded as the carrier phase, the Doppler frequency, code 
phase and signal-to-noise ratio.  
 
2.3 NLSE Cost Function 
 

A direct approach for obtaining signal parameters is obtainable 
to choose them so as to minimize the weighted sum of squared 
errors for 1st N complex samples expressed by 
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This is a quadratic cost function of the NLSE for errors and the 
NLSE of the signal parameters are obtained by minimizing this 
quadratic cost function based on the observation vector 

Nr . With 
assuming a unity scalar weight factor such that 1/1 2

)( == krkw σ , 

the quadratic cost function of NLSE in Eq. (12) can be rewritten 
as 
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Obviously the assumption of a unity scalar weight factor for the 
received IF GNSS signal is reasonable in case of additive white 
Gaussian noise. Therefore, the minimization problem of the 
quadratic cost function of NLSE in Eq. (12) is equivalent to the 
maximization problem of the log-likelihood cost function of 
MLE in Eq. (4). As a result, the above equation can also be used 
to estimate signal parameters as similar way to the MLE except 
for the minimization criteria satisfying  
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The use of Jaccobian matrix based on this equation makes it 
possible to take a faster NLSE solution algorithm compared to 
the MLE (we describe it in a later section).   
 
3. Practical Approach to MLE with Code-free 
Assumption 
 

The MLE cost function in Eq. (11) contains the discrete nature 
of code signal and does not satisfy the convexity property of the 
continuous time function for all range of code delay values. 
Assuming the estimate of τ  available from a conventional DLL 
such that 1)ˆ()( ≈−− ττ kCkC  for a small code delay estimate 
error, we can obtain the code free signal model given by 
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where )ˆ()()( τ−= kCknkn  and )(kr  denotes the code-free 
signal. 

Assuming the initial carrier phase φ  known, a new MLE cost 
function of the code-free signal, i.e., known τ , is given by  
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Assuming that code synchronization and dispreading are 
performed prior to carrier phase tracking since sufficient signal-
to-noise ratio is necessary for the DLL to operate successfully, 
we can use the above cost function to derive the MLE algorithm 
for tracking the carrier Doppler frequency.  
 

The reason why we can use the code-free assumption on the 
MLE is as follows: For the code tracking, the carrier aided 1st 
order DLL is widely used successfully since the DLL 
measurement is only used to remove long term bias. Also, a quite 
small bandwidth can be used for the DLL because the receiver 
motion is captured by the measured change in carrier phase, i.e., 
the Doppler frequency. A well-designed carrier tracking loop 
contains a PLL which is assisted by a FLL because the FLL is 
less sensitive than the PLL and provides us with more robust 
tracking performance. As a result, the code phase can be 
successfully estimated by using a carrier-aided DLL and also can 
be assumed to be known, i.e., if the Doppler frequency is well 
tracked, the code phase is considered as a known value because it 
is directly obtainable by integrating the Doppler frequency.   
 
4. Solution Methods for MLE 
 

Because the signal parameters are located in the cost functions 
in Eq. (4) and (13) with a complicated nonlinear manner, no 
simple close form solution is possible. The one way to obtain the 
MLE is the estimation technique by means of mathematical 
programming with iterative approach, e.g., Levenberg-Marquardt 
method or NLSE method. The other way is given from a tracking 
technique with non-iterative approach by feed-forward manner 
directly using a gradient assuming no coupling between signal 
parameters.  
 
4.1 Iterative Batch Solution Methods 
 
Levenberg-Marquardts method 

The Levenberg-Marquardt method is known as the most 
effective optimization method to determine the MLE [6]. This 
algorithm requires the computation of the gradient as well as the 
Hessian matrix of the log-likelihood function given by  
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where MLθ  is the 2-by-1 MLE state vector ( T

df ],[τ= ), Gi and 
Hi are the 2-by-1 gradient vector and the 2-by-2 pseudo-Hessian 
matrix, respectively:   
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and Di is a diagonal matrix chosen to force Hi + Di to be positive 
definite so that 1)( −+ ii DH  will always be computable, and i 
represents the iteration index. Detailed expressions for Eq. (20) 
are given as follows:  
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The 1st and 2nd derivative of the delayed code )( τ−kC  with 
respect to τ  is obtained from the Early and Late arm given by 
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where d represents correlator spacing of Early-minus-Late codes 
in chips and also in practice can be set go to zero.   

The procedure of the Levenberg-Marquardt algorithm is as 
follows: Initial values for 0θ̂  must be specified and matrix 

0D  
should be initialized to a diagonal matrix. The Levenberg-
Marquardt algorithm corrects its state using Eq. (17) and the 
MLE cost function )|ˆ( 1 ZL i+θ  is compared with the previous 
cost function to increase 

iD  and try again or to check 

convergence.  By accepting iθ̂  only if )|ˆ()|ˆ( 111 ZLZL −≥ θθ , 
we guarantee that each iteration will improve the likelihood of 
our estimates. This iteration is terminated when the change in 

)|ˆ( ZL iθ  falls below some predefined threshold.  
 

The carrier phase is obtained by the MLE solution equation for 
φ̂  in Eq. (8) where the estimate of carrier frequency is 
integrated by iterative manner as  

 
φδφφ ˆˆˆ 1 +=+ ii                  (28) 

 
where φδ ˆ  denotes the carrier phase difference between the 
incoming and the replica IF signals at each iteration which is 
given by arctangent of Q over I.  
 

For an example of the carrier Doppler frequency error in GPS 
L1 CA code signals, the cost function in Eq. (16), the gradient 
function in Eq. (18) and the pseudo-Hessian function in Eq. (19), 
can be normalized as depicted in Figure 1. The cost function has 
a bell shape between approximately ±900 Hz and has a 
maximum value at the zero Doppler frequency error. For the 
smaller Doppler frequency error, the gradient value becomes 
smaller while the pseudo-Hessian value becomes larger. It means 
that the correction to the next step, i.e., 

iii GDH 1)( −+ , in Eq. 
(17) becomes smaller and results in a fine convergence. In 
contrast, for the larger Doppler frequency error, the correction 
becomes having larger value. This makes it possible for the 
estimator to converge fast to the true value. By choosing the Di 
to force Hi + Di to be positive definite at every iteration, we can 
control the convergence speed of the estimator.    
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Figure 1 Graphical description on Levenberg-Marquardt 
method for Doppler frequency estimation 

 
Assuming the code phase τ  is available from a conventional 

DLL, i.e., code-free signal model, substituting the efficient cost 



function for code-free signal in Eq. (16) into Eqs. (22) and (25) 
yields a scalar (1-by-1) gradient and Hessian only in terms of 
Doppler frequency fd given by     
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where )(krr = .  
This new solution does not require the redundant calculations on 
the gradient and Hessian for τ , i.e., the gradient and the Hessian 
become a scalar. So, the computational load for this case is less 
than the case before. 
 
NLSE method 

From Eq. (2), the nonlinear signal model for N-dimensional 
observation vector can be written in a vector form given by  
 

NN nhZ += )(θ                (31) 
 

where Z  is the N-by-1 IF signal measurement vector, 
[ ]TNrr )1(),.....,0( − , 

Nn  is the N-by-1 measurement error vector, 

[ ]TNnn )1(),.....,0( − , and )(θNh  is the N-by-1 nonlinear signal 
model.        

Linearizing the Eq. (31) about nominal value )],[( *** T
dfτθ =  

yields a linear measurement equation given by 
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where TNzzZ )]1(),......,0([ −= δδδ , 
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and the elements of Jaccobian matrix are given by 
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where  ( )φπ ++= kffT dIF )(2sinsin  

( )φπ ++= kffT dIF )(2coscos . 
 
The solution of Eq. (31) can be obtained by the iterative least-
squares technique by using Eq. (32) described in the following 

equations [6] 
 

ZHHH TT δδθ 1)( −=              (35) 
iii δθθθ +=+ ˆˆ 1                 (36)    

 
Detailed expressions related to the Jaccobian matrix are given as 
follows:  
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Substituting Eqs. (33) and (34) into Eqs. (37) and (38) yields 
final results as: 
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Since the matrix size of H  and Zδ  are N-by-2 and N-by-1, 
respectively, those of HH T  and ZH Tδ  becomes 2-by-2 and 
2-by-1, respectively.  
 

As in the case before, applying the efficient cost function for 
code-free signal in Eq. (16) to the NLSE yields the more fast 
solution algorithm since it does not require the redundant 
computation of Jaccobian for the code phase τ . Thus, a matrix 
computation in Eq. (35) becomes a simple scalar division and 
multiplication process:    
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where )(ˆ)()( krkrkz −=δ .  
 
Note that the solution of NLSE is more sensitive to the accuracy 
of the signal amplitude estimate than the MLE. This is because 
the NLSE uses the difference of received and locally generated 
signals, i.e., )(ˆ)()( krkrkz −=δ  in the solution algorithm as in 



Eq. (40) while the MLE uses the product of received and locally 
generated signals as in Eqs. (21) to (25).   

 
4.2 Non-iterative Feed-Forward Solution Methods 
 

Non-iterative solution for MLE is obtainable directly from the 
log-likelihood cost function of the MLE in Eq. (4). As mentioned 
before, with same assumption on N as in Eq. (6), the 
maximization or the minimization problem of the cost function 
becomes same to obtaining θ  satisfying [7]  
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Normally, since the signal amplitude A is easily obtainable by 
using a sum of square of I and Q as shown in Eq. (9), A is 
assumed to be a known parameter.  
 
Carrier Phase Tracking Loop 

Assuming the parameters of τ  and 
df  are known, the 

gradient of log-likelihood cost function for φ  is given by 
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The above equation is obtained based on Single-Input-Single-
Output (SISO) system assumption, i.e., no coupling between 
signal parameters, and equals to the Q value in the prompt arm of 
a normal PLL.  

For an example Figure 2 depicts the normalized cost function 
and gradient function for GPS L1 CA signal with 1 ms coherent 
integration time with respect to carrier phase error in Eqs. (7) and 
(44) with assuming no error ( 0~ =τ  and 0~

=df  where •~  
represents the estimate error) for noise free environments. It is 
easily shown in the figure that the gradient function provides a 
linearly proportional value to carrier phase error which is similar 
to discriminator output of PLL.  
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Figure 2 MLE cost function and gradient function for carrier 
phase error 

 
Doppler Frequency Tracking Loop 

Assuming the parameters of τ  and φ  are known, the 
gradient of log-likelihood cost function for 

df  is given by 
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Note that this is similar to the Q in the prompt arm of a normal 
FLL except for the use of k which is included for avoiding the 
use of a successive carrier phase measurements to generate the 
Doppler frequency error in FLL.   

For an example Figure 3 depicts the normalized cost function 
and gradient function of Doppler frequency error in Eqs. (7) and 
(45) with assuming no error ( 0~ =τ  and 0~

=φ ) for noise free 
environments. It is also shown in the figure that the gradient 
function provides a linearly proportional value to Doppler 
frequency error which is similar to discriminator output of FLL.  
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Figure 3 MLE cost function and gradient function of Doppler 
frequency error 

 
Code Phase Tracking Loop 

Assuming the parameters of φ  and
df  are known, the 

gradient of log-likelihood cost function for τ  is given by 
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This is equal to the I value in the Early-Minus-Late arm of a 
normal DLL.   

For an example Figure 4 depicts the normalized cost function 
and gradient function with respect to code phase error in Eqs. (7) 
and (46) with assuming no error  ( 0~

=φ  and 0~
=df ) for noise 

free environments. This is the GPS L1 CA code case. It is also 
shown in the figure that the gradient function provides a linearly 
proportional value to code phase error which is similar to 
discriminator output of DLL. The nonlinearity in the figure 
comes from discrete sampling of PRN codes.   
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Figure 4 MLE cost function and gradient function for code 
phase error 
 
Block Diagram Implementations 

The block diagram implementation of the non-iterative 
solution of MLE for the carrier phase, the Doppler frequency and 
the code phase tracking in Eqs. (44), (45) and (46) is depicted in 
Figure 5. Note in the figure that the Doppler frequency tracking 
loop contains one more mixer for k of which integrated and 
dump value is noted as 

pQ . It seems the non-iterative solution 

for MLE requires one less integration and dump process than the 
conventional FLL/PLL/DLL where the I and Q values in prompt 
arm for carrier tracking and in Early-minus-Late arm for code 
tracking are used. But, in order to get signal amplitude A and to 
demodulate navigation data bits, the I value in the prompt arm 
should be used and the processing load of the MLE is still little 
bit larger than the conventional FLL/PLL/DLL.       
 

 

Figure 5 Block diagram of non-iterative solution for MLE: 
carrier phase, Doppler frequency and code phase tracking 

 
A FLL discriminator output in a conventional FLL is calculated 
by using a 1st order approximation on the frequency, i.e., a 
difference between a successive carrier phase estimates divided 
by the coherent integration time given by 
 

tf kkkd ∆−= − /)( 1, φφ               (47) 

 
where t∆  represents the coherent integration time equal to the 
sampling time of loop filters in seconds and a successive carrier 
phases 

kφ  and 
1+kφ  are obtained by using arctangent function 

of the I and Q values at k and k+1, respectively. Therefore, the 
use of the successive measurements for the Doppler frequency 
estimation in Eq. (47) may cause an approximation error and one 
step delay effect on the estimated value while the use of the 

gradient function in Eq. (45) provides the Doppler frequency 
error, which is similar to FLL discriminator output, directly to 
the estimator. This makes it possible to be a more robust tracking 
for GNSS signals.         
 
5. Loop Filter Implementation 
 

In order to produce an accurate estimate of the signal 
parameters from the noisy received signal at its output, a 
classical approach of designing a loop filter, e.g., FLL/PLL/DLL, 
which has a fixed update rate is implemented. For the robustness 
of carrier tracking loops, a combination of a 2nd order FLL and a 
3rd order PLL is used and their bandwidths are set to 
accommodate for a given dynamic specification of receivers 
based on the minimum required signal-to-noise ratio. A carrier 
aided 1st order DLL with a quite narrow bandwidth is used to 
track code phase. A filter equation for FLL/PLL/DLL including 
code and carrier Numerical Controlled Oscillator (NCOs) is 
given in a state space form as: 
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where [τ ,φ ,

df ,
df& ]T is the state vector for the code phase in 

chip, the carrier phase in cycles, the Doppler frequency in Hz 
and the rate of the Doppler frequency in Hz/s, respectively, 

PLL,0ω  and  
FLL,0ω  are the natural radian frequencies of the 3rd 

order PLL in rad/s and the 2nd order FLL in rad/s2, respectively, 
PLLr  and FLLr  are the weighting factors of PLL and FLL, 

respectively ( PLLr + FLLr =1), r denotes the scale factor converting 
Doppler frequency to code chip rate which is related to the 
carrier aiding to DLL , and [

τe ,
φe ,

df
e ]T represents the DLL, 

PLL and FLL discriminator outputs which are proportional to 
gradients in Eqs. (46), (44) and (45), respectively .     

Discriminator outputs of the fixed rate optimal filter in Eq. 
(48) are similar to the measurement innovation process in a 
Kalman filter. Thus, the Eq. (48) can be written as 
 

eKkk ′+= −θθ ˆˆ                (49) 
  
where e denotes a vector form of discriminator outputs and K′  
represent a 4-by-3 fixed rate optimal filter gain matrix.   

 
If we use a Kalman filter for signal tracking, it is possible to 

check the resultant design matrix of the Kalman filter by 
comparing the steady-state Kalman gain 

∞K  and the fixed rate 
optimal filter gain K ′  in Eq. (49). This is because if the filter is 
well designed, these two gains should be same ( KK ′≈ ). That 
means the use of the state space form of tracking filters with 
fixed rate and bandwidths makes it possible to use an empirical 
approach for evaluating the performance of designed tracking 
loops by comparing the gain matrices of the Kalman filter and 
the fixed rate optimal filter. 
 
6. Conclusion 
 

In this paper we derived a novel signal tracking algorithm 
based on MLE approach. The MLE cost function for the GNSS 
signal parameters were reviewed and expanded to a various form 



of solution algorithms by a simple assumption on received 
signals or signal parameters. Two iterative solution methods 
were derived based on the maximizing (or minimizing) problem 
on the cost function. The Levenberg-Marquardt method provided 
an efficient solution algorithm but requires more computational 
time than conventional tracking methods. Assuming no coupling 
of signal parameters, i.e., SISO system, the non-iterative feed-
forward solution method was derived based on the MLE cost 
function, where the gradient function of the cost function was 
used to correct errors similar to the discriminator output of 
conventional tracking loops. It was also shown that the use of 
non-iterative feed-forward manner to deal with received IF signal 
made it possible to save the processing time. The non-iterative 
feed-forward solution method was integrated with a fixed rate 
optimal filter to reduce the noise effect on the estimated signal 
parameters.   

The presented methods will be ideally suited for improving 
the performance of the signal tracking module in severe signal 
environments such as high dynamics or indoor positioning.  
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