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Abstract

This study investigates the improvement in the theoretical success rate of the integer ambiguity resolution in
GPS/GNSS carrier-phase positioning by using many visible satellites. It estimates the dependence of the rate on the
baseline length in relative positioning under the condition of the use of double/triple-frequency navigation signals.

The calculation results show that the use of 14 navigation satellites (i.e., seven GPS and seven Galileo ones)
remarkably improves the success rate under the condition of very short baseline length, compared with the use of

seven GPS ones.

The numerical reliability of the calculated success rates is strictly tested by examining the tightness of the union
and minimum-distance bounds to the rate. These bounds are also shown to be effective to investigate the realization

of the high success rates.
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1. Introduction

Correct resolution of integer ambiguities is indispensable for
precise carrier-phase relative positioning with the Global
Positioning System (GPS) and the global navigation satellite
system (GNSS). This means that one needs an extremely high
success rate and an extremely low error rate of the resolution,
even in the heavily difficult resolution for non-permanent, or
mobile, receivers used in realistic and unstable environments [1].

Various conditions which are intended to improve the
performance of the integer ambiguity resolution have been
discussed in several studies. Such conditions include the short
baseline length of relative positioning [2], the use of a reference
receiver network [3], the use of multiple carrier-phase
measurements, or carrier frequencies [4], more visible satellites,
including planned European Galileo navigation ones [5] (see
Table 1). Most of these investigations, however, do not seem to
touch upon the rigorous argument on the performance of the
integer ambiguity resolution, which should be based on exact
statistical and mathematical discussions.

This study investigates the dependence of the theoretical
success rate of the fast and reliable integer ambiguity resolution
in GPS/GNSS double/triple-frequency carrier-phase relative
positioning on its baseline length. It estimates the success rate
under the condition using up to 14 navigation satellites (i.e.,
seven GPS and seven Galileo ones). This study uses the accurate
method in order to calculate the theoretical success rate.
Single-differentiated ionospheric delay is regarded as an error
under the conditions of nonvanishing baseline length with regard
to the reference and rover receivers.

2. Equations of GPS/GNSS measurements

Let P and ¢g,i denote single-differentiated GPS/GNSS
code-pseudorange and carrier-phase measurements, respectively,
where ¢, i, and k indicate the kind of signals, the epoch of
measurements, and the distinction of the satellites, respectively.

They satisty the following equations:
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where Ti denotes the coordinates of a receiver, I the
ionospheric delay, 7p4i and 7é.ai the receiver's code-
pseudorange and carrier-phase clock offsets (with dependence on

the kind of measurements), 5"3# and 5¢§J the code-
pseudorange and carrier-phase measurement errors, N(_f the
integer ambiguity, and wf the wind-up phase. ég:i and U are
expressed in a unit of cycles. Ag (=¢/fq) denotes the
wavelength of the carrier wave (and fa is the frequency). ef

denotes the unit line-of-sight vector from the satellite & to the
receiver, which is assumed to have been determined with
ko,

sufficient accuracy. I7' is measured as the delay length at the
frequency of GPS-L1. All measurements and error variables are
assumed to have been single-differentiated, i.e., these are the
variables relative to the reference receiver's ones.

The wvector variable of double-differentiated
ambiguities is denoted by V in this study.

integer

3. Maximum a posteriori success rate

A decision, &, maps ¥ to a value of decision parameter, N

6: v— N,
map

where ¥ and N are double-differentiated float and integer
ambiguities when discussing carrier-phase  GPS/GNSS
positioning.



Table 1: GPS and Galileo navigation satellite systems.

GPS Galileo
operation UsA EU
number of satellites 28 30
orbital radius (km) 26,560 29,994

year of initial operation 1993 {2010)
signal frequencies (MHz) L1:1574.42 Ll
L2:1227.6
L5*: 1176.45 L5(E5a): «

Sy M E5b:1207.14
E6: 1278.75

The success rate arisen from 4§ is calculated by integrating
the conditional distribution of ¥/ as follows:
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in which Ds(IN) is defined to be the acceptance region where
the decision § chooses N in the space of ¥, and M is the inverse
of the covariance matrix of #. Equation (1) has used the
independence of @5 on /N and the assumption of the non-
informativeness of P(IV ), a priori distribution of V.

A maximum a posteriori decision, 5MAP, is defined as:

dmar i ¥ — Nyap,
map

)

Nyar = argll\rfnax p{N |v).

The decision is well known to maximize ®s. Let GMAP
denote its optimal rate and Pmar(INV) its acceptance region.

4. Voronoi polytope

Dumar(N) is shaped into a congruent point-symmetrical
Voronoi polytope in the space of 1, as shown in Fig. 1. Each
lattice point, NV, resides at the center of the polytope.

Voronoi-relevant, i.e., adjacent, lattice points are defined, as
their distinct Voronoi polytopes share facets. The adjacent lattice
points can be represented as displacement vectors from a certain
lattice point to its adjacent ones. Let us represent the set of
adjacent integer lattice points as

{nl,nz, ey, T, L

» g}, (3)

which contains q lattice points. This set contains all possible
lattice points, but any two of them, 7 and %4, should satisfy,

Fig. 1. Example of multivariate Gaussian distribution
and the integration region for optimal success

rate (Voronoi polytope).
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in which the generalized distance, ¢, of each adjacent lattice
point from the origin is introduced. The representation of (3) will
not be assumed to distinguish between point-symmetrical lattice
points, i.e., 7 and —7%; thus, they are counted as one lattice
point in (3).

5. Methods to calculate the optimal success rate

This study calculated @MmAP and the several upper and lower
bounds by using the following algorithms on multidimensional
lattices.

The LLL lattice basis reduction [6], which has polynomial-
time numerical complexity, yields the approximate shortest
vector of a lattice and an approximate closest vector solution (i.c.,
a Babai nearest plane one [7]). The former produces an upper
bound, ¥*B.%, to the optimal success rate and the latter a lower
one, &B, accompanied by a parallelotope-shaped suboptimal
acceptance region [8], as follows:
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where lii's are the diagonal elements of the lower triangular
matrix, L, derived by the Cholesky factorization of M. M is
assumed to have been LLL-reduced.

The improved Fincke-Pohst algorithm [9], or sphere decoding,
which is bootstrapped by a Babai nearest plane solution and has
exponential-time numerical complexity, yields the shortest (i.e.,
minimum-distance) vector of a lattice, the closest vector solution,
and the set of Voronoi-relevant lattice points. The first also
produces an upper bound, ®MAPMD, to amAP and the third a
lower one, ®MAP.UB, as follows:



GMAP,MD > AMAP > OMAP,UB: (6)
CMAP,MD = miin CEMAP,i+
q
aMAp,UE = 1 — ZﬂMAP,i:
=1

amap,i = 1 — Buap

2q; [ 1
:\/57? ; cxp(—gafﬁ) dz,

where the generalized distances, ¢#'s, in (4) are used. ¥MAP.UB
is a well-known union bound.

The above-mentioned closest vector solution derived from
sphere decoding produces the optimal success rate through
executing a Monte-Carlo integration [10].

The bounds, ¥MAP.MD and ®MAP,UB, tend to be tight under
the conditions of the high success rate of ambiguity resolutions.
The simultanecus tightness of upper and lower bounds
discharges us from executing Monte-Carlo integrations, which
require huge amount of computations especially under such
conditions.

6. Calculation results

This study calculated the dependence of the optimal success
rates, OMAP's, of integer ambiguity resolution on a priori
standard deviation in single-differentiated ionospheric delay,
oAl

aMar's were calculated chiefly by using Monte-Carlo
integrations [10]. The calculation conditions are shown in Table
2. We used the assumption that oar = AL x 107% [11]. The
constellation of satellites is shown in Fig. 2. The double- and
triple-frequency conditions were examined by this study. The
Galileo L1 and E5b signals were chosen for the former and the
L1, E5b, and E6 ones for the latter.

The calculation result indicates that @MApP > 0.999999 under
the condition of 14 visible satellites and the 13 km or shorter
baseline length as shown in Fig. 3. The condition of many
satellites remarkably improves the success rates as compared
with that of seven satellites (i.e., GPS ones only).

Furthermore, the use of triple-frequency signals and 14
satellites is shown to improve the success rate under the
condition of the 7 km or shorter baseline length as compared
with that of double-frequency signals.

This study also examined the tightness of the nearest-plane
bounds, ®B.1 and @B in (5), and the sphere-decoding ones,
OMAPMD and ®MAP.UB in (6), as shown in Fig. 4. Figs. 4(a)
and 4(b) investigate the condition of 14 visible satellites and
triple-frequency signals. The result indicates that ®MAP,UB and
HMAPMD are extremely tight under the condition of amap >
0.99 and amar > 0.999999, respectively. Both of the nearest-
plane bounds are, however, loose or unstable as shown in Fig.
4(a).

The bounds under the condition of seven satellites represent
similar tightness to those under the condition of 14 satellites as
shown in Fig. 4(c). The different behaviors are, however,
discerned in the sphere-decoding bounds as follows: ¥MAP,UB
tends to be loose under the condition of @Mar < 0.9. The
untightness of #MAPMD appearing at a7 ~ 5 mm is caused by
the accidental degeneracy of short lattice vectors.

north

west
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south
Fig.2. Constellation of GPS (denoted by their PRN
numbers) and Galileo (denoted by gn) satellites.
Table 2: Parameters for calculations.
number of GPS satellites 7
number of Galileo satellites 7

standard deviation in the error in
single-differentiated carrier phase
measurements

o time-varying component 0.02 cycle

¢ time-constant component 0.02 cycle
standard deviation in the error in
single-differentiated code pseudorange
measurements

o time-varying component 0.5m

¢ time-constant component 0.5m
AR(1) coeflicient in time-varying
component

e carrier phase measurements 0.93

o code pseudorange measurements 0.5

measurement rate 1 epoch/sec
measurement time 1sec

¢ priori standard deviation in single-

differentiated ionospheric delay OAL

7. Conclusion

This study theoretically investigated the improvement in the
success rate of the integer ambiguity resolution by using many
visible navigation satellites and estimated its dependence on the
baseline length in relative positioning.

The remarkable improvement in the rate was confirmed by
using 14 satellites especially under the condition of very short
baseline length, compared with the use of seven GPS ones.

The numerical reliability of the calculated success rates was
rigorously examined by testing the tightness of sphere-decoding
bounds, i.e., union one and minimum-distance one. These tight
bounds were shown to be effective to investigate the high
success rate of the integer ambiguity resolution and discharge us
from executing laborious Monte-Carlo integrations.
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Fig. 3. Calculated success rates.
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Fig. 4. Examination of calculated success rates and

bounds.



