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Abstract 
 
 Safety-critical navigation systems have to provide ‘reliable’ position solutions, i.e., they must detect and exclude 
measurement or system faults and estimate the uncertainty of the solution. To obtain more accurate and reliable 
navigation systems, various filtering methods have been employed to reduce measurement noise level, or integrate 
sensors, such as global navigation satellite system/inertial navigation system (GNSS/INS) integration. Recently, 
particle filters have attracted attention, because they can deal with nonlinear/non-Gaussian systems. In most GNSS 
applications, the GNSS measurement noise is assumed to follow a Gaussian distribution, but this is not true. 
Therefore, we have proposed a fault detection and exclusion method using particle filters assuming non-Gaussian 
measurement noise. The performance of our method was contrasted with that of conventional Kalman filter methods 
with an assumed Gaussian noise. Since the Kalman filters presume that measurement noise follows a Gaussian 
distribution, they used an overbounded standard deviation to represent the measurement noise distribution, and since 
the overbound standard deviations were too conservative compared to the actual distributions, this degraded the 
integrity-monitoring performance of the filters. A simulation was performed to show the improvement in performance 
of our proposed particle filter method by not using the sigma overbounding. The results show that our method could 
detect smaller measurement biases and reduced the protection level by 30% versus the Kalman filter method based on 
an overbound sigma, which motivates us to use an actual noise model instead of the overbounding or improve the 
overbounding methods. 
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1. Introduction 

 
For safety-critical applications of global navigation satellite 

systems (GNSSs), such as aircraft and missile navigation systems, 
it is important to be able to detect and exclude faults that could 
cause risks to the accuracy and integrity, so that the navigation 
system can operate continuously without any degradation in 
performance. For high-accuracy systems, the fault detection and 
exclusion (FDE) function needs to be able to detect and exclude 
smaller biases. More independent GNSSs (e.g., the GALILEO 
and Global Navigation Satellite System (GLONASS) satellites) 
are becoming more widely available, and therefore we need to 
take into account simultaneous faults of multiple satellites. It is 
difficult to detect small errors and simultaneous multiple faults 
using conventional snapshot receiver autonomous integrity 
monitoring (RAIM) algorithms, and therefore various filtering 
methods have been studied for reducing the measurement noise 
level or integrating a GNSS with other sensors so that the 
navigation system can estimate its position more accurately and 
reliably. Because filters reduce the noise level of measurements 
using previous information, they can provide a better FDE 
performance than snapshot algorithms can. However, because 
most filters, such as Kalman filters, presume that the 
measurement noise and disturbance follow a Gaussian 
distribution, their performance can degrade if this assumption is 
not correct. In addition, when the system is nonlinear, a linearized 
or extended Kalman filter is used, and in this case the 
nonlinearity affects the estimation and FDE performance. 
Because GNSS measurement noise does not follow a Gaussian 
distribution perfectly, the Kalman filter approach has to use an 
inaccurate noise model that may cause performance degradation. 

To address these problems, we have proposed a new fault 
detection and exclusion algorithm using particle filters. Particle 

filters have been researched over the last few years [1][2] as an 
alternative for solving nonlinear/non-Gaussian problems. Particle 
filters are based on the Monte Carlo approach, which monitors 
sample points, referred to as ‘particles’, and describes the 
posterior distribution of the states. The proposed algorithm 
estimates a distribution of a measurement residual from the 
posterior density and detects exceedingly large residuals to satisfy 
a false alarm rate. This algorithm can detect faults based on an 
accurate estimation of the posterior distribution, and it can detect 
and exclude faults almost simultaneously, so that the system can 
exclude a fault measurement easily. With a non-Gaussian GNSS 
measurement noise, a particle filter can estimate the distribution 
of the state more accurately than a Kalman filter can, and 
therefore it has a better FDE performance. In addition, if the 
system is also highly nonlinear, then the performance will also be 
better. Particle filters for nonlinear systems have undergone much 
research. However, the advantage of these filters with a non-
Gaussian noise distribution has not been investigated. Therefore, 
our work focused on the effect of a non-Gaussian noise 
distribution on the FDE performance, which will be assessed by 
the simulations. 

Section 2 introduces the non-Gaussian GNSS measurement 
model employed for our simulations, and a sigma overbounding 
method applied to the Kalman filter approach. Section 3 briefly 
discusses the employed particle filter algorithm. Section 4 
discusses our proposed fault detection and exclusion algorithms 
based on the above particle filter, and an associated protection 
level calculation method. The results of the simulations are 
summarized and discussed in Section 5, and finally Section 6 
concludes the paper with a summary and suggestions for future 
work. 

 
2. Non-Gaussian GNSS Measurement Noise 



 
This section describes a true noise model and the overbounding 

method used in the simulations, which are based on the work of 
Shively and Braff [3].  
 
2.1 GNSS Pseudorange Noise Model 

 
In most GNSS applications, including the Space-Based 

Augmentation System (SBAS) and the Ground-Based 
Augmentation System (GBAS), the pseudorange measurement 
noise is assumed to follow a Gaussian distribution. However, this 
is not true. In general, the core part of the noise distribution can 
be characterized well using a Gaussian distribution, but the tail 
part of the distribution is heavier than in a Gaussian distribution. 
The heavier tail is due to ground-reflected multipaths or to 
systematic receiver/antenna errors [4]. Our simulation used a 
Gaussian core-Laplacian (GL) tail probability density function 
(PDF) for the receiver noise distribution for a heavy-tailed true 
noise model, which will be applied to our particle filter method. 
Shively and Braff [3], used the GL model to represent the actual 
Local Area Augmentation System (LAAS) pseudorange noise 
data collected at the ground facility. 
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where  is the pseudorange noise, n σ  is the standard 
deviation of the Gaussian core density, and σ58.2=trn  is the 
transition point from the Gaussian to the Laplacian distribution. 
The other constants are defined as follows 
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The probability density uncertainty factor (PUF) and the tail 
uncertainty factor (TUF) provide confidence in consideration of 
the volume of data. The simulation sets PUF = 0.52 and TUF = 1 
used in our model follow the convoluted three-receiver noise 
model shown in the Shively and Braff’s paper. The narrower 
curve shown in Figure 1 represents the PDF. 

 
2.2 Sigma Overbounding 

 
Since measurement noise does not follow a Gaussian 

distribution, sigma overbounding methods are used to simplify 
implementation and to prevent integrity risks [3][5][6]. 
Overbounding is a procedure used to find the inflation factors 
(INF), which are the ratio of the overbounded and the observed 
sigmas 

σσ ⋅= INFover
.    (3) 

 
The inflation factor is determined using Equation (4) 
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where  is the observed true PDF, which was taken to 
represent the GL distribution in our work, and  is the 

Gaussian PDF, which has a zero mean and a standard deviation of 
unity. The denominator value of 5.81 is a multiplier used for 
LAAS users to calculate a defined fault-free protection level 
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[7]. 
This method provides users with an overbound broadcast sigma 
that they can use to estimate the fault-free protection levels to 
bound position errors with the required probability. Figure 2 
shows a pictorial representation of this method, which shows that 
the one-sided tail probabilities of the Gaussian and the GL 
distributions have the same observed standard deviation. Using 
the above method, the value of the INF was determined to be INF 

= 2.07. Figure 1 shows the PDF values of the true noise model 
(GL) and the overbounded Gaussian (OG) model. The OG model 
had a broader distribution, so that the tail was conservative 
enough to bound the heavy-tailed GL model. 

 
Figure 1. The Gaussian–Laplacian model and the Gaussian 

overbound model. 

 
Figure 2. The set inflation factor. 

3. PARTICLE FILTERS 
 

Particle filters can deal with nonlinear/non-Gaussian dynamic 
systems as well as linear/Gaussian systems. They use a sequential 
Monte Carlo approach, and are based on a sequential importance 
sampling (SIS) procedure. We have used the sampling 
importance resampling (SIR) algorithm for the simulations 
discussed in this paper. This section briefly introduces the basic 
SIR algorithm to provide a background to our proposed FDE 
algorithm. A more detailed derivation of this filter is described in 
the literature [8]. 

  
3.1 Sequential Importance Sampling (SIS) 
 

First, we will define the state–space equations for a dynamic 
system as follows 

),(f 11 −−= kkkk vxx ,    (5) ),(h kkkk nxz =
 
where  is a state vector at the k-th epoch,  is a state 

vector of the previous epoch,  is a process noise vector at 
the previous epoch,  is a time propagation function of the state 
and the process noise,  is a measurement vector at the k-th 
epoch,  is a measurement noise vector at the k-th epoch, and 

 is a measurement function of the state and the measurement 
noise. 
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In the above system, the functions ‘ ’ and ‘ ’ need not be 
linear, and the noise vectors, ‘ ’ and ‘ ’, can follow an 
arbitrary probability distribution, not necessarily a Gaussian 
distribution, whose probability density function must be known to 
implement the filter. The expectation and the variance of the 
states are obtained from the posterior probability density 
distribution (PDF), which is expressed using a mass function of 
random samples and associated weights, as shown in Equation (6). 
The random samples are known as ‘particles’ 
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where , },...,1,{:1 kiik == zz )(~ i
kω  is the normalized weight of 

the (i)-th particle at epoch k, )(⋅δ  is the Dirac delta function, 
 is the (i)-the particle at epoch k, and  is the number of 

particles.  
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The particles are derived from the prior distribution, and the 
associated weights are calculated sequentially using Equation (8) 
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The conditional probabilities, )( )(
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which are known as the ‘transition prior density’ and ‘likelihood 
density’, respectively, are determined by the system definition. 
The importance density, ),( )(
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the problem, is a design parameter chosen by the designer. After 
determining the importance density, we can calculate the current 
weight of the i-th particle and the sum of the weights of all the 
particles is then normalized to unity 
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We now need to choose the importance density to complete the 
filter. Theoretically, the optimum importance density is given by 
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as shown by Doucet et al. [9]. 
 
However, because it is not possible to know the exact PDF of 

Equation (10), various choices have been proposed [10][11]. The 
above procedure is known as sequential importance sampling 
(SIS). A popular choice of the importance density in the SIS 
algorithms is the transition prior density 
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This method is very simple and easy to implement. However, it 
still has the degeneracy problem mentioned above [2]. The 
degeneracy problem can be mitigated by using a more refined 
importance density and a ‘resampling (or selection)’ procedure.  

 
3.2 Resampling 

 
The SIR filter resamples the particles when the degeneracy is 

too severe. A proper measure of the degeneracy is the effective 
sample size, , which is calculated from the normalized 

weights using equation (12). The value of  is always smaller 

than the number of particles: the smaller the value of is, the 

more severe the degeneracy is. The SIR filter performs 
resampling when the value of  is smaller than a given 

threshold. The ‘resampling’ is a particle rearrangement procedure 
to discard any particles that have low weights and to multiply 
particles that have large weights to have the same weights as in 
Equation (13).  
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4. Integrity Monitoring 

 
GNSS-based navigation systems must have an integrity 

monitoring system that contains two main functions: (1) the 

detection and exclusion of satellite faults and (2) an estimation of 
the uncertainty of the position solutions. First, the system 
calculates decision variables using a specific algorithm, and then 
it compares these to thresholds that have been set to satisfy the 
integrity requirements for the desired operation. If any decision 
variable exceeds the threshold, then the system concludes that the 
corresponding measurement has a fault, and excludes the detected 
fault. If such an exclusion is not possible, then the navigation 
system does not trust the current position solution and uses other 
navigation solutions. Second, because the system cannot know 
the true position estimation errors, it estimates the uncertainty of 
the solution, which is known as the protection level (PL). The 
system compares the value of the PL to a predefined alert limit 
(AL) for an expected operation to decide whether or not the 
navigation system will use the solution. We implemented four 
monitoring algorithms in this work: the snapshot  method 
(SSX2), the Kalman filter  method (KFX2), the Kalman 
filter individual residual (KFIR) method, and the particle filter 
individual residual (PFIR) method. Our proposed algorithms for 
the two integrity monitor functions based on particle filters, 
which are based on the PFIR method, are described in the 
following Subsections 

2χ
2χ

4.1 and 4.2, and the other methods will be 
treated briefly. 

 
4.1 Fault Detection and Exclusion Algorithm 

 
There are several algorithms that can be used to detect and 

exclude faults using filtering methods. Our proposed algorithm is 
a residual method that uses the posterior density of a state, which 
is estimated from the particle filters and the measurement noise 
distribution. Residual is defined as the difference between an 
expected measurement and an actual measurement, which will be 
described in detail in the following subsections. Residual 
methods using the snapshot algorithm (SSX2) and the Kalman 
filter (KFX2) calculate the decision variables using the squared 
sum of the residuals, which is known as the weighted squared 
sum of the error (WSSE), and this follows a  distribution 
whose degrees of freedom are determined by the number of 
measurements as in Equation (14) 

2χ

⎩
⎨
⎧ −

=
KFX2        ,),0(
SSX2   ,)4,0(

~ 2

2

M

M

r

T

N
N

WSSE
χ
χ

C
rr   (14) 

where  is the residual vector,  is the covariance matrix 
or the residual vector, and  is the number of measurements. 

r rC

MN
This type of algorithm will not be described here, but can be 

found in literature [12][13]. The  test has low detection 
sensitivity to faults affecting only a small number of the 
components of the residuals, and this drawback can be avoided by 
testing the components individually. Individual tests can detect 
multiple faults simultaneously and also any system dynamics 
failures or unexpected severe disturbances. The Kalman filter or 
the particle filter approach can examine the residuals individually, 
not the combined residual, because it has previously estimated 
position. In the Kalman filter approach, KFIR, the algorithm 
compares a measurement residual to the multiple of the residual 
standard deviation. Since our proposed method, PFIR, assumes a 
non-Gaussian noise, it cannot use the residual variance. Instead, it 
estimates the residual distribution, and then decides whether the 
residual is located in a ‘normal’ region or not. These individual 
residual algorithms have to estimate the residual distribution and 
determine the individual detection threshold for each residual. 
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(1) Calculation of the residuals and the distribution 
 
The expected measurement was calculated from the 



propagation of the previous epoch’s state vector as 
),ˆ(f)],ˆ([f~
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The expected measurement is a projection of the propagated 

state from the position domain to the measurement domain. 
Under normal conditions, the expectation distributions lie close to 
each other, but when there is a measurement fault, they are 
separated by a distance. In our work the distance between the two 
distributions is referred to as the residual 
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The residual distribution for a measurement is estimated as 

follows 
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where  is estimated by the particle filters using 

Equation (6), and  is the noise distribution expressed by 
Equation (1). 
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A sample of a residual distribution under nominal conditions is 
shown in Figure 3. The expectation is near zero, and the large 
residuals have low probabilities. When the residual is in the 
region between the two thresholds, known as the ‘normal region’, 
the system declares that there is no fault in the measurement. 
Otherwise, it determines the measurement as having a fault, and 
excludes it for continuous operation. 

 

 
Figure 3. PDF of a residual and thresholds. 
 
In real implementation, the expectation of the PDF is located at 

the calculated residual and not zero. Therefore we calculate a 
one-sided tail probability below or above zero as a decision 
variable using Equation (18) and compare it to the individual 
false alarm rate that will be defined in the next subsection for 
each measurement 
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Since the Kalman filter individual residual method assumes a 

Gaussian noise, the PDFs are all Gaussian, and the residual 
distribution can be expressed simply by a standard deviation so 
that the thresholds are determined as the multiple of the standard 
deviations. 

 
(2) Set thresholds 
 
The threshold is set to satisfy a specified false alarm rate when 

a  method based on the Gaussian distribution, SSX2 or KFX2, 
is employed 
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However, the individual residual test requires a threshold for 

each measurement, and therefore an individual false alarm rate, 
, needs to be determined first. Because all the measurements 

are independent, the individual false alarm rate is approximated 
by a value of 1/  of the total false alarm rate as follows. 
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where 

M
 is the number of measurements. Because we 

assumed the measurement noise followed a symmetrical 
distribution in Section 2, the particle filter algorithm declares a 
fault present if one-sided tail probability of a residual  
exceeded a value of 
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The threshold for the Kalman filter approach is determined by 
the following equation. 
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The value of  is equal to  because of the symmetry 

and they are determined as the multiple of sigma from the 
Gaussian cumulative density function and the value of .  

rightT leftT

faP
 

4.2 Protection Level 
 

LAAS users must calculate both fault-free and faulted 
protection levels (  and , respectively). The faulted 
protection levels indicate the position error protection assuming 
that a fault measurement exists. LAAS assumes that a fault is 
induced from the reference receiver errors. However, we assumed 
that the fault includes all possible errors contained in the 
measurements that are used for position estimation. The formulas 
used to calculate the protection levels based on a snapshot 
method assuming a Gaussian noise were derived as follows. The 
Kalman filter and the particle filter methods can be used to obtain 
the protection levels using a similar procedure, which will be 
discussed later. In GNSSs, the measurement equation can be 
expressed using a linear function 
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where  is a measurement vector,  is an observation 
matrix,  is a state vector, and  is a noise vector. The state 
vector is estimated using the weighted least squares method and 
the estimation error can be obtained from Equation (23) 
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where x̂δ  is the estimation error, zδ  is the measurement 
error, and  is the weighting matrix. W

When a fault, T, occurs in a measurement, j, then the 
estimation error is expressed by a deterministic and a statistic part, 
as follows 
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The expectation of the estimation error is a function of the fault, 

T 
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and the covariance is determined by the standard deviations of 
the measurement noise 

11 )()(]ˆCOV[ −+−+ == WHHHWHx TT
WW

jδ .     (27) 
 
Finally, the protection levels are calculated using the following 

equations [7]. The term  denotes the protection level 
assuming that the j-th measurement has a fault. The letters ‘H’ 
and ‘V’ substituted for ‘X’ denote ‘horizontal’ and ‘vertical’, 
respectively. 

jXPL1

hffmdk σ=0HPL , 2
,2

2
,1

j
1 )()(HPL ++ ++= jjjhmd Tk HHσ  (28) 

vffmdk σ=0VPL , +⋅+= jjvmd Tk ,3
j
1VPL Hσ   (29) 

where , ,  1
2,2

1
1,1

2 )()( −− += WHHWHH TT
hσ 1

3,3
2 )( −= WHHT
vσ

810.5=ffmdk  and . 898.2=mdk

The standard deviation multipliers,  and , are 

defined in ‘LAAS MASPS’ 
ffmdk mdk

[7] for three ‘Performance Type 1’ 
reference receivers. The value of the fault, T, is equal to the 
threshold for each FDE algorithm because it is the maximum 
fault that the system cannot detect. The filtering methods can 
estimate the protection levels with the above procedure, however, 
the values of the σk  and T  parts are determined differently 
for each algorithm. The Kalman filter method can obtain the 
standard deviations, hσ  and vσ , from the covariance matrix, P, 
and  is calculated from the residual standard deviation and the 

individual false alarm rate. The particle filter methods can 
estimate them from the estimated posterior density and the 
residual density, respectively.  
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5. Simulation 

 
A simulation was performed to assess our proposed FDE 

algorithm based on particle filters. To investigate the advantage 
of the non-Gaussian assumption, conventional methods using the 
Gaussian assumption were also implemented in parallel. 

 
5.1 Simulation Setup 

 
The propagation model and the measurement equation were 

defined using linear functions, as defined by the equation listed 
below, because we only focused on the effect of non-Gaussian 
noise and not on any nonlinearity. The states used were a user 
position in East-North-Up (ENU) coordinates and a receiver 
clock bias. The user was assumed to be static and 24 GPS satellite 
constellation was generated for each epoch for 100 epochs. The 
pseudorange measurements were generated from the constellation 
and the user’s position at a frequency of 1 Hz. 
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, I is the identity matrix,  is the 

line of sight vector from the user to the i-th satellite,  is the i-

th satellite’s position, and  is the pseudorange measurement 
of the i-th satellite at the user. The measurement noise is derived 
from the assumed distribution shown in Equation (1). 
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The overbounded standard deviation for each pseudorange was 

determined using the wide area augmentation system (WAAS) 
model, which was a function of the elevation angle of each 
satellite [13] 
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where )(⋅F  is the obliquity factor,  is the i-th satellite 
elevation angle,  

,  

iEl
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The simulator injects biases into the pseudorange of a satellite as 

follows 
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otherwise          0m,

sec 80 ~ 60k  7m,
sec 40 ~ 20k  8m,
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.  (33) 

Four FDE algorithms described in Section 4 were used to 
detect and exclude the fault and to estimate the protection levels. 
Subsection 5.2 discusses the results from the position filters and 
the integrity monitor algorithms and Subsection 5.3 discusses the 
position estimation and the protection levels that provided the 
final navigation information for the user. 

 
5.2 Measurement Domain Result 

 
Figure 4 shows the decision variables (WSSE) and the 

thresholds of the SSX2 and the KFX2 algorithms. When a 
decision variable exceeded the threshold, the system declared a 
fault. The SSX2 method could not detect any faults due to the 
high noise level. The KFX2 method detected the 8 m bias initially, 
but it failed to detect thereafter. When a filtering method fails to 
detect and exclude a bias, the remaining bias propagates through 
the filter so that it becomes more difficult to detect afterwards. 

 
Figure 4. WSSE and threshold of SSX2 and KFX2. 

 
Figure 5. Residual and threshold of KFIR and PFIR (fault 

measurement). 
The individual residual methods (KFIR and PFIR) had as many 

decision variables as the number of measurements at an epoch. 
The left-hand side of Figure 5 shows the normalized residual of 
the fault measurement and the threshold value for the KFIR 
method, and the right-hand side of Figure 5 depicts them of PFIR 
method. The KFIR method detected an 8 m bias from 20 to 39 s, 
and failed to detect a fault at an epoch of 40 s. It did not detect a 7 
m bias after 64 s. The undetected bias remained in the filtering 
process, and led to a large position error that propagated into 
subsequent process, which led the monitoring system not to 
detect the fault after the missed detection and the other nominal 
residuals to be noisy. The PFIR method detected the faults at all 
epochs at which the system has a fault measurement. 

 
5.3 Position Domain Result 



 
Figure 6 shows the vertical position errors (left-hand side) and 

the vertical protection levels (right-hand side) for each algorithm 
after the FDE procedure. Since the SSX2 method (green) and the 
KFX2 method (black) did not detect faults well, they exhibited 
large position errors induced by the remaining faults. The KFIR 
method (red) excluded most of the 8 m bias and provided more 
accurate solutions from 20 to 39 s. However, the missed detection 
of the 8 m bias caused a large error after the epoch of 60 s. The 
PFIR method (blue) detected and excluded all the biases and 
provided the most accurate position solutions. Table 1 shows the 
95% level errors for each method. As for the protection levels, the 

 and  values are not shown here, because they were 
always smaller than the  and 1VPL values, respectively, in 
our simulation. The data show that the SSX2 method provided 
the highest protection level, and the other filtering methods had 
lower protection level. The KFX2 method provided a slightly 
higher protection level than the KFIR method, which means that 
the KFIR method could detect smaller biases. The PFIR 
protection level was the lowest and this shows that the algorithm 
outperformed the other algorithms in terms of its FDE ability. 

0HPL 0VPL

1HPL

Table 2 shows the mean of the protection levels under a fault-free 
condition. The data in Table 2 show that the PFIR method 
reduces the PLs by about 30% of the values obtained using the 
KFIR method. Since the data in Figure 6 show the PL values after 
exclusion of the detected fault measurement, they have higher 
values in the fault section, because of the reduced number of 
visible satellites. The results imply that the PFIR method can 
provide higher availability than the other methods can. 

 

 
Figure 6. The vertical position errors and protection levels after 

exclusion. 
 
Table 1. The 95% level position errors for each algorithm. 

 SSX2 KFX2 KFIR PFIR 
Horizontal Error (m, 

95%) 3.93 3.61 3.17 0.66 

Vertical Error 
 (m, 95%) 6.29 4.83 4.19 0.67 

 
Table 2. Protection levels under fault-free conditions. 

 SSX2 KFX2 KFIR PFIR 

1HPL  (m) 
(

1HPL / , %) 
KFIR1,HPL

9.23 
(163.36) 

6.46 
(114.34) 

5.65 
(100) 

3.81 
(67.43)

1VPL  (m) 
( / , %) 

1VPL KFIR1,VPL
22.21 

(263.46) 
9.87 

(117.08) 
8.43 
(100) 

5.92 
(70.23)

 
6. Conclusion 
 

In this work, we have developed a fault detection and exclusion 
algorithm that tests measurement residuals individually using 
particle filters. We have described our algorithm and the non-
Gaussian heavy-tailed measurement model used in the 
simulations. The simulation results show that our proposed 
algorithm detected smaller measurement biases and generated 
smaller protection levels by about 30%, which implies that 

systems with the FDE algorithm can provide better integrity 
monitoring performance than other methods, which assume an 
overbounded Gaussian measurement. The data show that the 
conservative sigma overbounding methods degrade the integrity 
monitoring performance. Inversely, using a true noise model or 
more accurate overbounding methods, we can provide a more 
available navigation system without losing any integrity or 
continuity. Although our proposed algorithm requires a high 
computational capacity due to the large particle set used, it can be 
used in more sophisticated systems or for development and 
performance assessment of sigma overbounding methods in 
conventional systems.  

In the future, more computationally efficient algorithms need 
to be developed for wide usage of our method. In addition, 
because our algorithm tests the residuals individually, it can be 
used to detect simultaneous multiple faults, which is another 
interesting topic for future research. 
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