가압경수로용 환형 실린더 연료봉의 단면치수와 스팬길이에 따른 진동특성해석

Vibration Characteristic Analysis of an Annular Cylindrical PWR Fuel Rod according to the Cross-sectional Dimensions and the Span Length

이강희* · 김재용* · 이영호* · 윤경호* · 김형규*

Kang-Hee Lee, Jae-Yong Kim, Yung-Ho Lee, Kyung-Ho Yoon and Hyung-Kyu Kim

Key Words : 가압경수로용 연료봉(PWR Fuel Rod), 환형실린더 연료봉(Annular Cylindrical Fuel Rod), 고유진동수(Natural Frequency), Mode shape(모드형상), 단면치수(Cross-sectional Dimensions), 스팬길이(Span Length), 유동유발진동 (Flow-Induced Vibration), 양립성(Compatibility)

ABSTRACT

Vibration characteristics of an annular cylindrical fuel rod, which was proposed as a candidate design of fuel's cross section for the ultra-high burnup nuclear fuel, according to the cross-sectional dimensions and the number of supports or the span length were analytically studied. Finite element(FE) modeling for the annular cross sectional fuel was based on the methodology, that have been proven by the test verification, for the conventional PWR nuclear fuel rod. A commercial FEA code, ABAQUS, was used for the FE modeling and analysis. A planar beam element (B21) that uses a linear interpolation was used for the fuel rod and a linear spring element for the spring and dimple of the SG. Natural frequencies and mode shape were calculated according to the preliminary design candidates for the fuel's cross sectional dimension and the number of span. From the analysis results, the design scheme of the annular fuel compatible to the present PWR nuclear reactor core was discussed in terms of the number of supports and fuel's cross section.

이 호 설 명 OR : 외부 봉(Outer 깽), IR : 내부 봉(Inner Rod), OD : 외경(Outer Diameter), ID : 내경(Inner Diameter), TH : 피 복관의 두께(THickness of cladding), A :단면적, I : 단면관 성모멘트, *p*.등가밀도, E: 탄성계수, r*: 유효반경

1. 서 론

핵연료는 노심의 극한 운전조건 및 사고조건에서도 구 조적으로 건전해야함과 동시에 핵연료로서의 본연의 기능인 핵분열 열을 냉각재로 충실히 전달해야 한다. 현재의 경수로 핵연료 설계 안은 극한 운전조건에서 운용되는 구조체로서 의 안전성을 추구하고 이와 함께 핵연료로서의 순수 기능에 부합하려는 두 가지 상반된 이해의 타협점인 셈이다. 동적인 핵연료 설계 관점에서, 핵연료 집합체는 정상운전과 과도, 사고조건을 포함하는 어떠한 운전조건에서도 구조적(혹은 동적으로)으로 안정(정성적으로 큰 변위가 발생되지 않아야 하며)해야 하며, 핵연료의 고유진동수가 운전 중 노심에서 발생되는 외부 가진원(혹은 주파수)과 일치되어 공진이 발생 되지 않음을 입증해야 한다. 운전 중 노심 내에서 발생되는 주요 외부 가진 주파수(external excitation frequency)에는 펌프 회전맥동에 의한 맥동주파수(펌프 회전축의 여기 주파 수 포함)와, 집합체의 길이방향 위치에 따른 달라지는 와류 여기(Vortex shedding) 주파수, 그리고 원자용기 아래의 냉 각재 유입 구에 위치하는 하단 지지구조물의 주기적인 움직 임 등을 들 수 있다⁽¹⁾.

여기서, 냉각재 유동과 핵연료 집합체의 지속적인 상호 작용의 결과로 발생되는 난류 압력섭동에 의한 핵연료의 진 동(turbulent buffeting)문제는 핵연료의 프레팅 마멸현상과 큰 상관관계를 갖으나, 핵연료 설계관점에서 피할 수 없는 문제다. 이를 저감하기 위한 설계방향으로 핵연료로서의 설 계요건을 만족시키는 범위에서 구조적인 인자(봉의 제원 및

 [†] 이강희, 한국원자력연구소 선진경수로연료개발센터

 E-mail : leekh@kaeri.re.kr

 Tel : (042) 868-2298, Fax: (042) 863-0565

^{*} 한국원자력연구소 선진경수로연료개발센터

간격, 지지체의 스팬간격, 스프링의 강성 등)를 적절히 변경 하거나 유로를 가로막는 지지구조체의 가림(blockage) 단면 혹은 난류발생을 최소화 하는 등의 조치가 있겠으나, 핵연료 의 열수력적인 성능에 위배되지 않는 범위 이내에서 만 가 능하다. 난류 여기진동에 의한 이론적인 해석법으로 봉들 사 이의 연성과 부가질량 효과가 고려된 자유진동 해석모델에 난류압력 섭동에 대한 수학적 모형을 실험적으로 가정하여 Galerkin방법과 포리에(Fourier) 변환에 의한 통계적인 해석 방법으로 관군 내에 있는 봉의 제곱평균 제곱근(rms) 변위 를 대략 예측할 수 있으나⁽²⁾, 핵연료 설계에 필요한 노심 핵 연료의 거동을 예측하는 모델로서는 아직까지도 많은 보완 (정확인 난류 압력섭동 가진력의 측정과 모델링, 지지격자체 및 혼합날개에 의한 횡류효과 등의 고려 문제 등)이 필요하 다. 아울러, 핵연료 봉의 동적인 특성은 경계조건의 모델링 과 조사영향에 의한 펠렛과 피복관의 기계적 거동에 대한 이론 모델화가 어려워 이론적인 접근이 용이하지 않고, 주로 축소 혹은 근사 시험모형을 이용한 실험(공기중, 수중 모달 시험, 동일한 조건의 해석모델을 검증하기 위한 목적으로도 이용됨)을 통해서 파악된다^(3,4).

한편, 초고연소도 고성능 핵연료의 연료봉에 대한 단면 형상 으로 연료봉의 내측과 외측에 동시에 유로를 갖는 환 형형 핵연료의 개념이 제안되었다. 그림 1은 기존 가압경수 로용 핵연료와 환형 실린더 연료봉의 단면형상과 개략치수 를 보여준다. 새로운 형상의 핵연료는 열전달 면적의 비약 적인 증가와 낮은 핵연료 중심온도를 가짐으로써 핵연료의 성능과 안전성 관점에서 상당한 잇 점을 갖는다⁽⁵⁾. 한국원 자력연구소에서는 MIT(미국) 선행연구를 기반으로 환형 연 료봉 설계안이 기존노심에 양립하기 위한 핵연료 집합체의 배열구성에 관한 예비 타당성 연구를 수행한 바 있다⁽⁶⁾. 아 울러, 저자의 이전연구에서는 환형 단위 연료봉의 진동특성 과 모델링 기법에 대한 예비분석을 수행하고, 환형 연료봉 이 기존노심에 양립하기 위한 지지조건 등에 관한 설계방 향을 제안하였다⁽⁷⁾.

그림 1. 핵연료 단면(기존연료봉(좌), 환형 연료봉(우))

본 연구에서는 초고연소도용 고성능 핵연료에 대한 후보 형상으로 제안된 환형 실린더 연료봉에 대한 단면치수와 스 팬간격에 따른 진동특성을 살펴보았다. 개발단계에 있는 핵 연료 봉의 단면치수는 통상 노물리 및 핵성능 코드를 이용 한 핵계산과 열수력 모사 선행해석을 기반으로 결정되나, 이 러한 값의 범위 내에서도 후보 치수 간에는 구조설계관점에 서의 설계변경(혹은 선택)에 대한 판단이 필요하며, 다양한 이해관계에 부합되는 최적 설계안을 제안하기 위한 방편으 로 단면치수의 변화에 따른 다점지지 연료봉(경수로용 단위 연료봉)의 진동특성에 관하여 해석적인 방법으로 분석하였 다. 또한, 연료봉을 지지하는 지지점의 수와 스팬간격이 고 유진동수에 미치는 영향을 파악하고, 새롭게 제안된 핵연료 의 단면 형상이 기존노심에 대해 양립성(적합성)을 갖기 위 한 요건에 관하여 토의한다.

2. 환형 핵연료봉의 진동해석 유한요소 모델

고온/고압 원자로의 노심에 위치하는 핵연료 봉의 진동 특성은 불확실성이 큰 여러 요인들에 의해 영향을 받게 되 는데, 이것은 주로 지지격자 스프링의 조사변형에 따른 간극 발생 등의 지지점 경계조건의 변화, 연소도에 따른 펠렛의 조사변형과 외부 피복관의 접촉상태의 변화, 노심내 가혹한 운전 환경과 이력에 따른 연료봉 내/외부 압력의 변화, 가 진 조건(유동조건의 변화)에 따른 임의적인 요인 등이 주를 이룬다. 펠렛과 피복관의 연소도에 따른 접촉조건은 연료 장입초기, 중기, 연소말기에 대하여 각각 개방간극(open gap), 부분간극(partial gap), 완전접촉(closed gap)의 세 가 지 모델로 가정할 수 있으나⁽¹⁾ 환형 연료봉의 경우는 내/ 외부에 동시에 간극이 존재함에 따라 이에 대한 적용이 용 이하지 않다. 참고문헌⁽⁷⁾의 환형 핵연료봉의 예비 진동해석 모델링에서는 이들에 대한 조건을 두 가지(개방간극, 완전 접촉)로 가정하고, 진동해석을 수행하였으나 두 가지 가정 모두 지나치게 보수적(기저 고유진동수가 대략 30 Hz이상 증가됨)이며, 실제 노심 내 핵연료봉의 거동을 예측하는 모 델로서는 개선의 여지가 많다.

본 해석에서 고려되는 환형 핵연료봉의 길이는 3.847 m 이고, 기존 가압경수로용 핵연료봉과 동일한 지지개념(스프 링과 딤플)과 조건(스프링강성)을 갖는다. 환형 핵연료봉의 진동해석 유한요소 모델링은 상용 해석코드인 ABAQUS를 이용하였고, 연료봉과 지지격자체 스프링에 대한 모델링 방 법론은 기존 연료봉의 진동해석 모델링 (단순모델) 방법론을 준용하였다^(3,4). 즉, 우라늄 펠렛은 피복관과 구조적으로 완전 히 밀착되어 접촉하지 않는다는 가정으로부터 연료봉의 강 성에 기여하지 않는 것으로 모델링하고, 다만 펠렛의 질량은 등가밀도(equivalent density, 환형 단면 내부의 펠렛과 내/ 외 피복관의 단면질량이 해석모델의 pipe형 보 단면에 대한 질량과 동일하다는 조건으로부터 계산된 밀도)를 이용하여 연료봉의 밀도로 적용하였다. 이러한 가정은 경험적으로 타 당한 것으로 알려져 있다. 여기서, 내부 봉과 외부 봉에 대 한 단면 2차 모멘트의 합을 등가모델(유한요소 pipe 보요소) 에 대한 값(단면계수)으로 가정하고, 이를 근거로 유한요소 모델에 대한 유효반경(effective radius)을 계산하였다. 이 값 은 앞선 언급에서와 같이 환형 핵연료봉에 대한 보수적인 모델링 기법을 개선시키는 한 방향일 수 있다. 몇 가지 환 형 핵연료봉의 단면제원에 대한 후보 설계안에 따라 계산된 유효반경의 값은 Table 2에 제시되었다. 유효반경의 개념은 펠렛의 강성이 연료봉의 강성에 영향이 작다는 가정에 근거 한 것으로, 펠렛과 피복관 사이의 접촉조건 변화에 따라 펠 렛이 연료봉의 강성에 영향을 미치게 될 경우, 아래 식 (1) 과 같이 단면계수에 적절한 보정상수를 곱하는 것이 타당하 다.

(1) $I_{sum} = a_1I_1 + a_2I_2 + (Correction Factor)$

다만, 본 해석에서는 논의의 단순화를 위해서 펠렛이 피 복관으로부터 완전히 분리된 경우만을 고려하기로 한다. 환 형 연료봉을 지지하는 지지격자체의 스프링과 딤플은 선형 스프링으로 단순하게 모델링하고, 이들에 대한 스프링 상수 로 각각 200 N/mm 및 700 N/mm를 적용하였다. 이 값은 단위 스프링 시편에 대하여 인장시험기로 시험통해 확인한 값이다. 아울러, 핵연료봉의 감쇄특성과 부가질량 효과는 고 려하지 않는다. 해석결과의 검증은 실험과 해석의 비교(상관 관계 해석)를 통해 기 검증된 표준 핵연료봉의 진동해석 결 과와 비교하여 환형 봉에 대한 해석결과의 타당성을 확인하 였으나 향후 이들에 대한 실험적 검증절차가 필요하다.

3. 해석결과 및 토의

3.1 연료봉 단면치수에 따른 진동특성

새롭게 개발되는 핵연료 봉의 단면 제원(내경, 외경, 피 복관의 두께, 펠렛 과의 간극 등)에 대한 결정은 통상 핵 성능과 열수력 특성에 대한 해석결과를 근거로 이루어지나, 본 연구에서는 선행연구⁽⁶⁾에서 제안된 후보 제원(외경 15.9 mm, 내경 9 mm)을 기준으로 표 1과 같이 5 가지의 환형 연료봉 단면에 대한 후보(해석모델 구성을 위한) 설계안을 구성하였다. 기준 설계안(D3)을 중심으로 내측 관의 직경이 각각 1 mm 씩 증가 또는 감소되는 경우(D1, D2)와 외측 관의 직경이 각각 1 mm 씩 감소 또는 증가되는 경우(D4, D5)로 후보 설계안을 가정하고, 피복관의 두께(약 0.6 mm) 와 펠렛-내/외 피복관의 초기간극(0.085 mm)은 기존의 연 료봉과 동일한 것으로 가정하였다. 표 2에는 후보 제원들에 대한 피복관 단면적, 단면계수, 유효반경과 연료봉의 단면 치수가 변경됨에 따라 일정하게 변화되는 환형 연료봉의 등가밀도를 제시하였다.

그림 2는 앞서 가정한 후보 설계안에 대한 환형 연료봉 의 진동해석 결과로, 단면치수 변화에 따른 7차 모드까지의 고유진동수 변화를 나타낸다. 후보 단면치수 들에 대한 기 저 고유진동수는 기존 PWR형 연료봉의 1차 고유진동수(41 Hz)에 비해 10 Hz(D2)에서 20 Hz(D1)까지 증가된 값으로 나타났으며, 굽힘강성과 질량의 비율에 따라 후보 설계안의 기저고유진동수의 크기가 결정됨(D1>D4>D3>D5>D2)을 알 수 있다. 즉, 환형 실린더 구조를 갖는 핵연료봉의 후보치 수들 간의 고유진동수 차이는 치수변경에 따른 등가질량 (등가밀도)과 단면계수의 변화에 따라 결정됨을 의미한다. 또한, 모드 수가 증가됨에 따라 고차 모드에 대한 기존 연 료봉과의 고유진동수 차이가 증가되는데, 이것은 핵연료의 동적설계 관점에서 단면치수를 변화시켜도 고차모드에 대 응되는 고유진동수를 기존 연료봉의 값으로 근접시키는 것 에 한계가 있음을 의미한다.

Table 1 Cross-sectional dimensions of annular fuel model

Design	OR-OD	OR-ID	IR-OD	IR-ID	TH
D1	15.9	14.7	11.2	10	0.6
D2	15.9	14.7	9.2	8	0.6
D3 ⁽⁶⁾	15.9	14.7	10.2	9	0.6
D4	14.9	13.7	10.2	9	0.6
D5	16.9	15.7	10.2	9	0.6

Table 2 Cladding cross sectional area(A), area moment of inertia(I), effective radius(r^*), equivalent density(ρ), natural frequuency factor(1: inner rod, 2:outer rod)

Design	A=A1+A2 (x1.E-5)	I=I1+I2 (x1.E-9)	r*(mm)	р (kg/m3)	(EI/pA) ^{0.5}
D1	4.882	1.127	7.268	21180	10.694
D2	4.505	0.996	6.997	29244	8.735
D3 ⁽⁶⁾	4.694	1.054	7.121	25354	9.562
D4	4.505	0.8995	6.783	21078	9.947
D5	4.882	1.231	7.468	29517	9.330

Fig. 2 Natural frequency variation according to the cross sectional dimension(D1~D5) of the annular cylindrical fuel(EA); Solid means coventional PWR fuel rod.

경수로용 핵연료 집합체를 구성하는 기존 연료봉의 지지 점 수와 각 스팬의 길이는 연료봉의 고유진동수가 노심에 존재하는 외부 가진 주파수에 근접하지 않도록 적절히 결 정(설계)된 것이며, 기존 노심에 양립하기 위한 신규 핵연 료의 설계에서도 이러한 제한조건은 충족되어져야 한다.

환형 연료봉의 지지점 수와 스팬의 길이에 따른 진동특 성 분석을 위해서 표 3과 같이 3 가지(SP8, SP6, SP5)의 지 지점 수 및 스팬 간격에 대한 모델을 가정하였다. 각 스팬 의 간격은 기존 연료봉에 적용된 간격비율(짧은 스팬과 긴 스팬 사이의 비율, 0.839)과 동일한 값으로 하였고, 기존 연 료봉에 대한 값(8점 지지, 7 스팬, WH형)을 기준으로 지지 점이 증가하는 경우(SP8)와 감소하는 두 가지(SP6, SP5) 모 델을 논의의 대상으로 한정하였다. 해석모델의 단면제원은 선행연구에서 제안된 기준 값을 근거로 하였다.

Table 3 Number of span and supports, span length for the span design models

Design	number of span	number of support	short span length(m)	long span length(m)
SP8	8	9	0.458	0.544
SP7	7	8	0.522	0.620
SP6	6	7	0.606	0.720
SP5	5	6	0.723	0.860

Fig. 3 Natural frequency according to the number of span and supports.

그림 3는 지지격자의 수와 스팬의 간격에 따른 환형 연 료봉의 고유진동수 변화를 도시하고 있다. 지지점의 수가 증가되어 스팬의 간격이 좁아지게 되면 고유진동수는 증가 되며, 이와 반대로 지지점의 수가 감소하여 스팬의 간격이 상대적으로 넓어지게 되면 고유진동수는 동일한 비율로 감 소하게 된다. 이와 같은 결과는 다점 지지 실린더 봉의 진 동특성에 대한 전형적인 결과로 직관적인 예측이 가능하다.

Fig. 4 Vibration mode shape according to the number of supports;(a) 6 supports, (b) 7 supports(conventional PWR fuel rod), (c) 8 supports, (d) 9 supports.

흥미로운 점은 기존 연료봉의 지지점의 수 보다 단지 하나 를 줄인 후보 설계안 SP6의 경우, 환형 연료봉에 대한 기 저 고유진동수와 2차, 3차 저차 고유진동수가 기존 PWR 형 연료의 고유진동수 값에 상당히 근접하고 있음을 알 수 있다. 이것은 환형 연료봉에 대한 후보 설계안이 기존 노심 에 적합(혹은 양립)하기 위해서는 지지 점의 수가 현재보다 감소되어야 하며, 지지점의 수가 많이 줄지 않아도 양립성 조건에 부합될 수 있으며, 스팬의 간격도 국부적인 진동변 위가 발생되지 않는 범위에서 적절히 넓어져야 함을 의미 한다. 아울러, 환형 연료봉의 지지점 수와 스팬의 간극에 대한 설계방향은 외부 수로의 압력손실 저감 설계를 위한 수력학적 핵연료 설계요건에도 부합되는 것이다. 즉, 내/외 부 수로의 압력손실 차이로 인하여 유동편중 또는 분리 (flow split)문제가 발생되면, 연료봉의 DNBR (핵비등이탈) 측면에서 환형 실린더 구조가 갖는 안전성에 있어서의 장 점을 감소시킬 수 있다.

그림 4는 지지점의 수와 스팬 간격에 따른 환형 연료 봉 모델의 진동모드형상을 도시하고 있다. 기저 고유진동수 에 대응되는 진동모드 형상은 연료봉 하단 쪽 넓은 스팬에 서의 진동진폭이 지배적인 전형적인 형상이다. 이 때문에, 하단 지지격자 체는 조사영향에 따른 스프링의 변형이 상 대적으로 작은 재질을 사용해야 한다. 고차모드에 대응되는 진동모드 형상은 스팬과 지지 점의 수에 따라 개별적인 또 한 유사형상을 취하고 있으며 이에 대한 절점(nodal point) 분석은 향후 동일모델에 대한 검증시험에서 적용하게 될 가진 및 측정점의 위치결정에 유용하게 이용될 것이다.

4. 결론

본 연구에서는 초고연소도용 고성능 핵연료에 대한 후보 형상으로 제안된 환형 실린더 연료봉에 대한 단면치수와 스팬간격에 따른 진동특성을 살펴보았다. 개발단계에 있는 핵연료 봉의 단면치수는 통상 노물리 및 핵성능 코드를 이 용한 핵계산과 열수력 모사 선행해석을 기반으로 결정되나, 이러한 값의 범위 내에서도 후보 치수 간에는 구조설계관 점에서의 설계변경(혹은 선택)에 대한 판단이 필요하며, 다 양한 이해관계에 부합되는 최적 설계안을 제안하기 위한 방편으로 단면치수의 변화에 따른 다점지지 연료봉(경수로 용 단위 연료봉)의 진동특성에 관하여 해석적인 방법으로 분석하였다. 또한, 연료봉을 지지하는 지지점의 수와 스팬 간격이 고유진동수에 미치는 영향을 파악하고, 새롭게 제안 된 핵연료의 단면 형상이 기존노심에 대해 양립성(적합성) 을 갖기 위한 요건에 관하여 토의하였다. 해석결과의 검증 은 실험과 해석의 비교(상관관계 해석)를 통해 기 검증된 표준 핵연료봉의 진동해석 결과와 비교하여 환형 봉에 대 한 해석결과의 타당성을 확인하였으나 향후 이들에 대한 실험적 검증절차가 필요하다.

후 기

본 연구는 과학기술부의 원자력 기술개발사업인 초고연 소도 고성능 핵연료 기술개발(대과제) 이중냉각 구조설계 기술개발(세부과제)의 일환으로 수행되었음.

참 고 문 헌

(1) H.K. Kim, M.S. Kim, Vibration analysis of PWR fuel rod, Journal of Sound and Vibration, Vol. 282, pp. 553~572, 2005.

(2) Paidoussis, Flow structure interaction ; Slender structure and axial flow, Academic Press, New York, 2002.

(3) H.S. Kang, K.H. Yoon, K.N. Song, Y.H. Jung, J.S. Yim, A study on the vibrational behavior of the fuel rods continuously supported by a rotary and bent spring system, Proceedings of Korean Society of Noise and Vibration Autumn Annual Meeting, pp. 454-460, 1999(In Korean).

(4) M.H. Choi, H.S. Kang, K.H. Yoon, K.N. Song, Vibration characteristics of the PWR fuel rod supported by new Doublet spacer grids, KAERI/TR-2452/2003, KAERI, 2003.

(5) Kellyn S. Betts, Article from environmental science & technology, American Chemical Society, Feb. 1, 2007.

(6) D.S. Oh, Y.S. Yang, Y.H. Lee, C.H. Shin, K.S. Kim, T.H. Chun, K.W. Song, Feasibility study on double-cooled annular fuel with KSNP(II), Transactions of the Korean Nuclear Society Autumn Meeting, Busan, Otc. 27-28, 2005.

(7) Kang-Hee Lee, Jae-Yong Kim, Young-Ho Lee, Kyung-Ho Yoon and Hyung-Kyu Kim, Preliminary Study on a Vibration Analysis Modeling for a New Cross-sectional Configuration of a Nuclear Fuel Rod, Transactions of the Korean Nuclear Society Autumn Meeting, Jeju, May 10-11, 2007.