# 소음예측 비례식을 이용한 자동차 엔진 공회전 속도 제어 장치 유로의 저소음 디자인 Low-Noise Design of Passage of Idle Speed Control Actuator in Automotive Engines Using Scaling Laws for Noise Prediction

# 정철웅\*·김재헌\*\*·박용환\*\*\*·이수갑\*\*\*

### Cheolung Cheong, Jaehyun Kim, Yonghwan Park, Soogab Lee

Key Words: Idle Speed Control Actuator (공회전 속도 제어 장치), Intake Noise (흡기소음), Valve Noise (밸브소 음), Duct Acoustics (덕트 음향학), Aeroacoustics (공력소음).

### ABSTRACT

Recently, plastic products in air-intake parts of automotive engines have become very popular due to advantages that include reduced weight, constricted cost, and lower intake air temperature. However, flow-induced noise in air-intake parts becomes a more serious problem for plastic intake-manifolds than for conventional aluminum-made manifolds. This is due to the fact that plastic manifolds transmit more noise owing to their lower material density. Internal aerodynamic noise from an Idle Speed control Actuator (ISA) is qualitatively analyzed by using a scaling law, which is expressed with some flow parameters such as pressure drop, maximum flow velocity, and turbulence kinetic energy. First, basic flow characteristics through ISA passage are identified with the flow predictions obtained by applying Computational Fluid Dynamics techniques. Then, the effects on ISA passage noise of each design factors including the duct turning shape and vane geometries are assessed. Based on these results, the preliminary low noise design for the ISA passage are proposed. The current method for the prediction of internal aerodynamic noise consists of the steady CFD and the scaling laws for the noise prediction. This combination is most cost-effective, compared with other methods, and therefore is believed to be suited for the preliminary design tool in the industrial field.

### 1. 서 론

차량에서 발생하는 소음은 차량 실내로 들어오 는 차내 소음과 차량 외부로 방출되는 차외 소음 으로 구분할 수 있다. 차내소음은 소음원으로부터 구조 진동에 의해 전달되는 전파음과 공기를 매체 로 전달되는 공기전파음으로 구분할 수 있다. 이 러한 소음원 중 기존에 주된 소음원으로 간주되던 연소 소음 등이 많은 연구를 통해서 저감되면서, 부수적으로 여겨왔던 2 차 소음원들이 주목 받기 시작했다. 그 중 흡기계에서 발생되는 흡기 소음 은 주로 차량 실내에서 운전자 또는 승객에게 불 쾌감을 주는 주요원인이 됨으로 이를 감소시키기 위한 방법이 필요하다.

엔진 흡기계 소음중 대표적인 것이 기류음이다. 이 기류소음은 보통 고속 회전 시에는 다른 소음 원 들에 의해 마스킹(masking)되어 크게 문제되 지 않지만 공회전(idle)상태나 저속회전 시에는 ISA(Idle Speed control Actuator) 및 ISA 유로

\* 책임저자; 정회원, 부산대학교 기계공학부 E-mail: <u>ccheong@pusan.ac.kr</u> Tel: (051) 510-2311, Fax: (051) 514-7640 \*\* 정회원, 현대자동차

\*\*\* 정회원, 서울대학교 기계항공공학부

를 통해 발생하는 기류 소음이 중요하게 된다.

본 논문에서는 ISA 유로의 저소음 디자인을 위 하여 상용 CFD 해석프로그램과 정성적인 소음 예 측식에 기반한 비례식을 이용하였다. Fig. 1 에서 공력소음을 해석하는 여러 방법들의 조합을 도시 하였다<sup>(1)</sup>. 각 항목의 아래쪽 방법들의 조합이 좀 더 구체적인 모델링을 통하여 정확도를 향상시키 는 방법이지만 해석 비용은 증가하는 경향을 가진 다.



본 논문에서는 산업현장에서 초기 설계단계에 서 최소의 비용으로 적용할 수 있는 즉 Fig. 1 의 제일 위 쪽 방법의 조합(그림의 궂은 화살표)을 사용하였다. 먼저 ISA 유로를 통한 유동을 난류 모델(Turbulence Model)을 포함한 RANS (Reynolds-Averaged Navier-Stokes) 방정식 을 풀어 유동 정보를 얻은 다음, 덕트 음향학의 쓰로틀 소음과 관련된 이론식에서 유도한 비례식 을 이용하여 정성적으로 소음을 분석하였다. 소음 예측 비례식에 나타난 유동관련 변수와 ISA 유로 의 여러 설계 변수 중 이 유동변수에 영향을 줄 것으로 판단되는 변수들을 선택, 그 유동 변수와 설계 변수들의 상관관계를 분석하여 저소음 디자 인에 이용하였다. 본 논문의 주된 목적은 ISA 유로의 저소음 디자인 과정을 통하여 일반적인 내 부 공력소음 즉 덕트 유동소음의 저소음의 설계 요인을 제시함과 동시에 현장에서 초기설계단계에 서 사용할 수 있는 최소 비용의 소음 해석 방법을 제시하고자 하였다.

# 2. 밸브와 쓰로틀에 의한 공력소음

파이프내의 유량을 조절하는데 가장 늘리 사 용되는 도구가 압력을 감소시키는 작용을 이용하 는 밸브이다. 기본적으로 밸브 유동은 오리피스판 (Orifice Plate) 의 유동과 유사하다. Fig. 2 에서 튜브내의 스로틀링에 의한 유로 면적의 변화와 그 에 따른 압력 변화를 도시화하였다. 상류의 압력 을  $P_1$ , 오리피스로부터 멀리 떨어진 하류의 압력 을  $P_2$  라고 하면, 밸브의 하류 방향에서 생성된 난류로 인하여 자유 유동에 있던 에너지가 열로 전환되고 그것은 모멘텀 (Momentum) 손실을 가 져오게 된다. 그러므로 상류와 하류의 파이프 지 름이 같다고 하더라도  $P_1$ 과  $P_2$ 는 다르게 된다. 유동의 흐름선(Streamlines) 은 오리피스의 하류 에서 최소면적지점(vena contracta 라고 한다)에 서 수렴하게 된다.



Fig. 2 Diagram of flow through a throttling constriction in a tube and the associated static pressure

이 최소면적지점에서 압력은 최소값을 속도는 최 대값을 가지게 된다. 밸브를 통한 압력손실을 *P<sub>I</sub>* - *P<sub>2</sub>* = Δ*P* 로 정의하고 이 변수는 자유류 *U<sub>I</sub>* 과 생성되는 난류 혼합양의 함수이다. 이 과정을 통 하여 생성되는 소리의 음향 파워는 자유류의 속도 와 난류혼합양과 함께 증가하게 된다. 아래에서 참고문헌<sup>(2-4)</sup>을 참조하여 소음예측 비례식을 유도 하였다.

높은 압력비에서, 즉  $U_c >> U_I$ ,  $P_I >> P_c$  의 조건 하에서 상류 유동과 최소면적지점 사이에 손실이 없다면 유동방정식을 적분하고 유체에 대한 상태 방정식을 사용하면 1 과 c 지점 사이에 다음과 같 은 방정식을 유도할 수 있다.

$$\frac{U_c^2}{c_1^2} = \frac{2C_d^2}{\gamma} \frac{\Delta P_c}{\sqrt{P_1 P_c}} \left(1 - \frac{\gamma \Delta P_c}{P_1}\right)$$
(1)

여기서  $C_d$ 는 밸브의 트림에서 발생하는 손실 을 고려하는 상수로서  $C_d \leq I$ 의 범위를 가진다.  $\Delta P_c$ 는 압력회복변수(pressure recovery factor) 의 정 의  $F_L^2 = (P_1 - P_2)/(P_1 - P_c)$ 식을 사용하여  $\Delta P$ 로 표 현할 수 있고,  $P_c$ 는 큰  $F_L$ 값에 대해서  $P_2$ 로 근사 화 할 수 있다. 그러므로 부피유량은 다음과 같은 식으로 근사된다.

$$Q^{2} \cong \frac{2C_{d}^{2}A_{c}^{3}}{F_{L}^{2}} \frac{\Delta P}{\rho_{1}} \left(\frac{P_{1}}{P_{2}}\right)^{1/2} \left(1 - \frac{\gamma \Delta P}{F_{L}^{2}P_{1}}\right), \quad \frac{\Delta P}{P_{1}} < 0.5 \quad (2)$$

여기서  $A_c$ 는 vana contracta 의 면적을 나타낸다. 식 (1)과 (2)는 압력손실과 입·출구 조건으로부터 유동조건을 근사할 때 사용할 수 있다.  $F_L$ 과  $C_d$ 는 밸브의 종류의 함수이고 아울러 난류생성에도 의 존한다. 밸브트림에서 생성되는 난류는  $(A_c)^{1/2}$ 에 비례하는 적분길이스케일(integral length scale)을 가 진다고 가정할 수 있다.

내부공기유동을 고려할 때 압력 손실이 임계값 보다 작아서 초크(choked) 유동의 스크리치 톤 (Screech Tone) 현상이 나타나지 않는 한 이중극과 사중극 소음원을 주요한 소음원으로 간주 할 수 있다. 파이프나 덕트의 절단 주파수 (Cutoff frequency) 보다 큰 주파수에 대해서는 소음원들이 마치 외부 유동장에 있는 것처럼 덕트내 유동에 작용하고 절단 주파수보다 작은 주파수 성분들에 대해서는 소음원 강도가 변하게 된다. 밸브 트림 의 아음속 난류 혼합에 의한 소음 방사에 대해서 는 외부 유동장으로 전파하는 음향 파워가 사중극 제트 소음의 형태를 가지므로,

$$\left(\mathbf{P}_{i}\right)_{T} = \alpha_{T} \frac{\rho_{c}^{2} A_{c}}{\rho_{2} c_{2}^{5}} U_{c}^{8} \left(\frac{\Lambda^{2}}{A_{c}}\right)$$
(3)

여기서  $\Lambda \in ᡫ = 0$  적분길이스케일을 나타내 고  $\alpha_r \leftarrow t = 0$  생성 과정을 통한 전파 효율을 나 타내는 경험적 수치로서 레이놀즈 수와 구조물의 모양에 의해서 결정된다. 식 (1)의 선형 형태와  $P_2 = \rho_2 c_2^2 / \gamma = 0$ 용하면 위 식은 아래와 같이 표 현할 수 있다.

$$\left(\mathbf{P}_{i}\right)_{T} = \rho_{2}c_{1}^{3}A_{c}\left(\frac{c_{1}}{c_{2}}\right)^{5}\left(\frac{P_{1}}{P_{2}}\right)^{2}\left(\frac{2}{\gamma}\frac{\Delta P}{P_{1}}\right)^{4}\left(\frac{\alpha_{T}C_{d}^{*}}{F_{L}^{*}}\right)\left(\frac{\Lambda^{2}}{A_{c}}\right)$$
(4)

 $A_c$ 는 밸브에 의한 통로 면적이므로  $\Lambda^2/A_c$ 은 주어진 밸브에 대한 밸브 난류의 상대 연관 (correlation) 면적을 나타내는 변수로 생각할 수 있 다. 밸브의 저소음 설계의 기본 개념은 바로 위 항으로부터 좀 더 작은 기준 길이의 난류를 생성 하고 좀 더 긴 거리에서 압력손실을 일으키도록 밸브 트림을 만들어  $\alpha_T$ ,  $\Lambda$ 의 값을 줄이는 것 이다.

작은 압력 손실 즉 P<sub>1</sub>/P<sub>c</sub><<1.89 에서는 사중 극 난류 혼합으로 인한 소음보다 이중극에 의한 소음이 좀 더 중요하다<sup>(5)</sup>. 이중극 소음은 다음과 같이 표현할 수 있다.

$$\left(\mathbf{P}_{i}\right)_{D} = \alpha_{p} \frac{\rho_{c} A_{c}}{c_{2}^{3}} U_{c}^{6} \left(\frac{\Lambda^{2}}{A_{c}}\right)$$
(5)

밸브 열림 면적에 대한 난류 길이 스케일의 비 로 Λ/d 를 사용하면 식 (5) 는 다음과 같이 나타 낼 수 있다.

$$\left(\mathbf{P}_{i}\right)_{D} = \rho_{2}c_{1}^{3}A_{c}\left(\frac{c_{1}}{c_{2}}\right)^{3}\left(\frac{\Lambda}{d}\right)\left(\frac{P_{1}}{P_{2}}\right)^{3/2}\left(\frac{2\Delta P}{\gamma P_{1}}\right)^{3}\left(\frac{\alpha_{D}C_{c}^{6}}{F_{L}^{6}}\right)$$
(6)

식 (6)의 이중극 소음식은 식 (4)의 사중극 소 음식에 대응한다. 그러면 이중극 소음과 사중극 소음으로부터 총 음향 파워는  $(\mathbf{P}_i) = (\mathbf{P}_i)_T + (\mathbf{P}_i)_D$ 와 같이 표현할 수 있고 그러므로 다음과 같이 표현 할 수 있다.

$$\mathbf{P}_{i} = \rho_{2}c_{1}^{3}A_{c}\left(\frac{c_{1}}{c_{2}}\right)^{3}\left(\frac{\Lambda}{d}\right)\left(\frac{2\Delta P}{\gamma P_{1}}\right)^{3}\left(\frac{P_{1}}{P_{2}}\right)^{3/2}\frac{\alpha_{D}C_{d}^{6}}{F_{L}^{6}}$$

$$\times \left[1 + \left\{\frac{\alpha_{T}}{\alpha_{D}}\frac{C_{d}^{2}}{F_{L}^{2}}\right\}\frac{c_{1}^{2}}{c_{2}^{2}}\left(\frac{P_{1}}{P_{2}}\right)^{1/2}\frac{\Lambda}{d}\left(\frac{2\Delta P}{\gamma P_{1}}\right)\right]$$
(7)

위 식에서 음향 파워는 대괄호 안의 두 개의 경험 적 상수값의 비에 의존하고 Δ*P*/*P*<sub>1</sub>의 3 제곱에서 4 제곱 사이의 값에 비례한다는 것을 알 수 있다.

# 3. 유동 및 정성적 소음 예측 결과

ISA 유로 내부의 유동장에 대한 정보를 얻기 위하여 상용프로 그램인 Star-CD 를 이용하여 수치모사를 수행하였다. ISA 유로의 경우 동적상 태보다 밸브 열림 비율이 일정한 정지 (static) 상태의 유동이 물리적으로 더 중요하여, 시간에 따른 격자의 변화는 고려하지 않았다. 또한, ISA 유로의 경우 각 구성부의 형상이 복잡하므로 사면 체 비정렬 격자를 이용하여 계산 격자를 생성하였 다. 계산 격자의 생성은 상용 프로그램인 ICEM CFD 를 이용하여 수행하였다. ISA 콘트롤러 내 부의 밸브 열림 비율에 따라 유로 내의 유동장에 차이를 보일 것이므로 ISA 콘트롤러 밸브 열림 비율을 0.33, 0.66, 1.00 으로 변화시키면서 격자 를 생성하였고 수치 해석을 수행하였다.



Fig. 3 Geometry of ISA Passage

Fig. 3 에서 실제 대상 모델에 대한 구조를 나타 내었다. 우측하단의 3 차원 입체 그림을 A, B, C 화살표 방향에서 바라본 2 차원 단면을 각각 A, B, C 그림에서 표현하였다. 그림에서 빨간 가는 화살 표는 유동의 흐름을 나타내는 것으로 왼쪽 상단의 A 그림에서 제일 왼쪽의 작은 원통이 ISA 를 나 타내고 오른 쪽 큰 원통이 쓰로를 밸브를 포함하 고 있는 메니폴드로 연결되는 덕트를 나타낸다.

Fig. 4 에서 계산 격자와 적용한 입·출구 경계 조건을 나타내었다. ISA 유로 내부의 유동을 모사 하기 위하여 사용한 격자의 총 노드 (Node) 수 와 총 요소 (element) 수는 각각 401250 개와 201007 개이고 사면체 요소 한 종류를 사용하였 다. Z 축 방향을 큰 지름의 덕트축 방향으로 하였 다. 입구쪽 압력은 대기압이며, 출구쪽 압력은 스 로틀 밸브가 완전히 닫힌 상태의 측정한 압력값을 사용하였다. Table 1 에서 Star-CD 를 사용하여 ISA 유로 내부 유동을 계산할 때의 여러 가지 조 건을 정리하였다.



Fig. 4 Computation mesh with boundary conditions

| Table 1. | Computational   | conditions                            | for flow   | simulation     |
|----------|-----------------|---------------------------------------|------------|----------------|
| 10010 1. | e o mp arationa | • • • • • • • • • • • • • • • • • • • | 101 110 11 | 01111011011011 |

| Item                  | Condition                      |                                |  |
|-----------------------|--------------------------------|--------------------------------|--|
| Flow types            | Compressible viscous flow      |                                |  |
| Turbulence<br>Model   | k-ε High Reynolds Number Model |                                |  |
| Star-CD version       | 3.100A                         |                                |  |
| Solution<br>Procedure | SIMPLE Algorithm               |                                |  |
|                       | Temperature                    | 20 °C                          |  |
| Air Properties        | Molecular Weight               | 2.896E+01<br>kg/m <sup>3</sup> |  |
|                       | Molecular<br>Viscosity         | 1.810E-05<br>kg/ms             |  |

#### 유동 해석 결과

복잡한 형상의 3 차원 유동의 계산 결과를 좀 더 쉽게 이해하기 위해 여러 단면들을 설정하였다. Fig. 5 에서는 계산 결과를 나타내기 위한 단면들 을 표시하였다. 속도 분포 예측 결과의 도시를 위 해서는 밸브를 사이에 두고 상류의 유동과 하류의 유동, 또한 베인 (vane) 을 통과한 이 후에 덕트 내에서의 유동특성을 보기 위하여 각각 베인의 끝 단면을 기준으로 하여 상류 60 mm 지점에서부터 30 mm 간격으로 떨어진 지점에서 덕트 축에 수 직한 단면을 사용하였다. 압력 분포에 대해서는 가장 압력 변화가 클 것으로 예상되는 콘트롤러 밑 베인 내부의 압력 분포를 관찰하기 위하여 베 인 끝단면을 기준으로 상류 방향으로 10 mm 씩 세 지점에서 단면을 사용하였고 베인 후류의 압력 분포를 보기 위하여 후류 30 mm 지점에서 덕트 축에 수직한 단면을 사용하였다. 난류 운동 에너 지의 경우에 있어서는 유동 흐름 방향의 분포를 보기 위하여 덕트 축을 포함한 단면과 덕트 대칭 면에서 좌,우 각각 20 mm 떨어진 지점에서 덕트

축과 수직한 단면을 사용하였다. 또한 콘트롤러 내부와 콘트롤러를 통과하기 전 후의 난류 운동 에너지를 관찰하고자 덕트 대칭면으로부터 우측 50 mm 지점과 우측 65 mm 지점의 단면을 사용 하였다.



Fig. 5 Cutting planes for the illustration of the flow simulation results: (a) for velocity, (b) for pressure, and (c) for turbulence kinetic energy

계산은 ISA 콘트롤러 내부의 밸브 열림 비율이 0.33,0.66,1.00 로 증가시키면서 수행하였으나 지면관계상 열림비율이 0.33 일 때에 대하여 상술 하겠다.

Figs. 6, 7, 8 에서 ISA 콘트롤러 내부 밸브 열 림 비율이 0.33 일 때의 유동속도, 압력, 난류 운 동 에너지에 대한 예측결과를 차례대로 나타냈다. Fig. 7 에서 보듯이 하류 경계에서의 낮은 압력으 로 인해 상류에서 하류로 끌려가는 유동이 발생하 며, 콘트롤러 내부 밸브에서 가장 빠른 속도를 나 타낸 후에 베인을 따라서 회전하면서 하류로 빠져 나감을 Fig. 6 에서 알 수 있다. 쓰로틀 밸브 상류 에서는 콘트롤러 쪽으로 난 유로 쪽으로 강하게 빨려 들어가는 유동이 주를 이루고 있음을 상류 방향 60 mm 지점의 단면에서 잘 나타나 있으며, 쓰로틀 밸브 하류에서는 베인을 따라 회전하면서 흘러들어온 유동이 덕트 입구 방향에서 바라보았 을 때 강한 시계 방향의 회전을 이루며 하류 쪽으 로 내려감을 알 수 있다. 이런 회전유동은 베인을 따라 돌아들어오게 된 유로의 특성상 발생하는 것 으로 난류에 에너지를 공급하는 메커니즘이 된다 고 생각할 수 있다. 난류 운동 에너지의 경우 Fig. 8 에서 나타냈듯이 좁은 유로를 가지는 콘트롤러 부근에서 가장 큰 난류 운동 에너지 값을 갖지만, 덕트 내부의 분포를 볼 때 유동이 시작되는 쓰로 틀 밸브 상류보다 베인을 통과하여 나올 때의 난 류 운동 에너지가 더 큰 것을 알 수 있다. 콘트롤 러의 경우 구조적인 문제 등으로 인하여 제어하기 가 용이하지 않으므로, 사극원 소음원을 줄이기 위해서는 베인을 통해서 덕트로 진입하는 유동에 대한 난류 운동 에너지에 대한 제어가 필요함을 알 수 있다.



60 mm upstream 30mm upstream 60mm downstream Fig. 6 Predictions for velocity distribution



Fig. 8 Predictions for turbulence kinetic energy

ISA 콘트롤러 내부의 밸브 열림 비율이 0.66, 1.00 로 증가하는 경우의 예측결과는 속도, 압력, 난류 운동 에너지의 분포의 기본적인 구조는 열림 비율이 0.33 일 때와 큰 차이는 없으나 ISA 콘트 롤러 내부에서 밸브가 더 많이 열림에 따라 최고 유동 속도가 215.5 m/s 에서 149.7 m/s, 126.5 m/s 로 작아지면서 그에 따라 압력 변화량과 난 류운동에너지의 최대값도 낮아지는 경향을 가지게 된다.

### 소음 해석 결과

ISA 유로 내부 유동장에서, 소음은 식 (7) 에 의 하여 유로 전후의 압력 변화 값에 비례한다. 또한 사중극 소음원은 정성적으로 난류 속도의 절대값 에 비례한다. 이 때 난류 속도는 난류 운동 에너 지 값으로 대변될 수 있다. 유동 해석 결과에 의 하면, 콘트롤러를 통과한 유동은 베인에 의하여 시계방향으로 회전하면서 덕트 내부로 진입하고 이에 따라 덕트 하류로 흘러가면서 강하게 시계방 향 회전 운동을 하게 된다. 이 때의 강한 회전은 난류 운동에 에너지를 부여하며 이러한 에너지의 일부는 사극원 소음원으로 작용하게 된다. 난류에 의하여 발생되는 유동의 교란은 유동장 내의 압력 장에도 영향을 주어 이중극 소음원의 발생과 관련 있다고 생각할 수 있다. 또한 덕트에서 콘트롤러 로 유입되는 유로와 다시 콘트롤러에서 덕트로 유 출되는 유로가 급격한 경사를 이루며 꺾이고 있는 데, 이로 인하여 유동이 급격한 유로 변경에 따라 고체 벽면과 충돌을 이루며 이러한 충돌이 일어나 는 부분에서 상대적으로 큰 압력 변화가 발생함을 알 수 있으며 이러한 압력 변화는 ISA 유로 유동 장에서 이중극 소음원으로 작용한다. 따라서, 본 절에서는 베인으로 인해 발생하는 회전 운동과 급 격한 유동의 진행 방향 변경에 의한 소음원에 주 목하여 유동장 입·출구의 압력 변화와 난류 운동 에너지를 변수로 하여 분석하였다.



Fig. 9 Tested vane geometries

Fig. 9 에서는 ISA 콘트롤러 밸브 열림 비율을 1.00 으로 유지한 채, 원래의 원주 방향 길이에 대해 1.00,0.66,0.33 의 길이비를 갖는 베인을 설치한 ISA 유로 형상을 보여주고 있다.0.00 의 경우 베인을 거치지 않고 바로 덕트 내부로 진입 하게 되는 유로를 형성하였으며,이 경우에는 덕 트 입구 쪽에서 바라보았을 때 오른쪽에서 유입되 게 되며 이는 원래 모양의 베인을 통과하는 경우 와는 반대편으로 들어가는 결과를 나타낸다.이러 한 형상에 대해,원래의 모델과 같은 유동 조건 하에서 유동 해석을 수행한 결과를 Fig.10 에서 나타냈다.



Fig. 10 Predicted velocity distributions according to the vane length ratio: (a) 0.66, (b) 0.33 and (c) 0.

베인의 길이가 원래의 모델에 비해 0.66, 0.33, 0.00 으로 줄어들어감에 따라 콘트롤러 부근의 전체적인 속도벡터의 분포는 크게 변화가 없으나 베인을 통과하여 덕트로 진입할 때 통과 거리가 줄어들면서, 반대로 덕트 내부로 유입되는 공간이 넓어지면서 전체적인 유동에서 속도가 감소함을 알 수 있다. 이는 콘트롤러 내부의 유동 속도도 떨어뜨려 최고 속도도 베인의 길이가 줄어듬에 따 라 감소하는 것을 알 수 있다. Fig. 10 의 (c) 그 립에서 보면 베인이 없는 경우, 덕트로 유입되는 구간이 오른편으로, 베인이 있는 경우와는 반대로 나타나며 덕트로 들어가기 전 유동 구간이 감소하 면서 최고 속도가 더욱 떨어짐을 알 수 있다. 베 인에 의한 효과는 덕트 내부의 회전 현상에서 뚜 렷이 나타나는데 이를 명확히 도시하기 위하여 Fig. 11 에서 배인 끝단면으로부터 덕트 후류 방 향으로 30 mm 지점에서 덕트축에 수직한 단면의 속도 벡터의 분포를 나타내었다. 베인의 길이비가 줄어듬에 따라 시계방향의 회전이 줄어듬을 확인 할 수 있고, 또한 베인이 없는 경우, 회전 방향은 유입되는 방향이 바뀜에 따라 시계 반대 방향이고 전체적인 회전 유동의 스케일이 작아짐을 알 수 있다.



Fig. 11. Veocity profile at 30 mm downstream from the endline of vane:(a)0.66 vane (b)0.33 vane, and (c) 0.00 vane

유로의 꺾임각 효과를 보기 위하여 Fig. 11 에서 나타낸 단순화된 모델에 대하여 같은 유동 조건하 에서 유동 해석을 수행하였다. 90 도로 꺾이는 형태의 유로와 이를 반경 25 mm 로 필렛 (fillet) 시킨 부드러운 유로를 비교하였는데, 90 도로 꺾이는 형태의 유로는 실제 모델에서 나타나 는 유로의 형태이다. Table 2 에서 두 가지 경우 에 대한 유동장 입·출구에서의 압력 변화, 최고 유동속도, 난류 운동 에너지와 밀도의 곱을 나타 내었다. 유로의 꺾임을 부드럽게 해 준 모델이 90 도로 꺾이는 모델에 비해 세 값이 모두 작게 나왔다. 이는 유동의 흐름이 부드러워지면서 고체 벽면에 충돌하는 양이 줄어들고, 이에 따라 유로 를 통과하면서 압력 손실이 줄어들게 되어 전체 유동장에서 압력 감소량이 줄어들고 따라서 속도 증가량도 감소, 난류 운동 에너지까지 같이 감소 시키는 효과로 생각할 수 있다.



Fig. 11 Simple models for smoothing effect

Table 2. Comparisons of selected parameters

| Selected   | Types                   |                         |  |
|------------|-------------------------|-------------------------|--|
| narameters | Right-angle             | Filleted                |  |
| parameters | passage model           | passage model           |  |
| Max Vel.   | 73.4 m/s                | 55.5 m/s                |  |
| $\Delta P$ | 4560 Pa                 | 2220 Pa                 |  |
| Σρk        | 4173 kg/ms <sup>2</sup> | 2101 kg/ms <sup>2</sup> |  |

저소음 설계안

ISA 유로에 대한 저소음 설계안은 3 절에서 기 술하였던 기본적인 변수들에 대한 분석 결과를 기 반으로 수행하였다. 앞절의 결과에서 제시한 것과 같이 베인의 설치는 덕트 내부로 유입된 유동의 회전 효과를 증가, 베인의 길이비 증가에 따라 쓰 로틀 밸브 후방의 덕트 내 회전 유동을 증가시키 고 이에 따라 압력 변화량, 유동 속도, 난류 운동 에너지의 증가를 가져온다. 따라서 이중극 소음원 과 사중극 소음원의 증가를 가져온다고 볼 수 있 으며, 특히 2 절의 결과로부터 덕트 내 가장 중요 한 소음원인 이중극 소음원을 대변하는 압력 감소 량의 증가는 저소음 디자인에 있어서 베인의 불필 요성을 암시한다. 두 번째로 콘트롤러와 베인을 잇는 유로에 대해서는 부드러운 꺾임을 갖는 유로 가 90 도의 꺾임각을 갖는 유로에 비하여 압력 변 화량 감소, 유동 속도 감소, 난류 운동 에너지가 작게 나오는 것으로 분석되었으므로, 같은 이유로 현 모델의 유로에 대해 필렛을 준 유로를 채택하 였다. 위의 두 가지를 접목하여 Fig. 12 에서 저 소음 디자인을 제안하였다.



Fig. 12 Proposed preliminary low-noise design of ISA passage

이 설계안은 2 절의 덕트 내 음향 에너지에 대 한 차원 분석식을 기본 개념으로 하여 설계되었다. 덕트 내 압력 손실이 이중극 소음과 정성적으로 비례하며 또한 난류 운동 에너지는 사중극 소음에 비례한다는 사실에 기초하여, 덕트 내 압력 손실 과 난류 운동 에너지를 줄이는 것이 기본 개념이 다. Fig. 13 에서 제안한 저소음 모델을 다른 모 델들과 비교하였다. 제안한 모델에서 덕트 내 압 력 손실은 다른 경우에 비하여 줄어들었음을 확인 할 수 있다. 다만 난류 운동 에너지의 경우 ISA 콘트롤러 열림 비율 1.00 에서 유로를 부드럽게 하지 않은 경우에 비교하여 제안한 모델이 약간 크게 나왔으나 이중극 소음원의 음향학적 효율이 사중극 소음원의 음향학적 효율보다 큰 것을 감안 하면 압력 손실이 줄어든 효과로 인해 전체적인 소음은 저감될 것이라고 생각된다.



Fig. 13 Comparison of selected parameters;(a) Max. velocity, (b) Pressure drop, and (c) overall turbulence kinetic energy

### 5. 결 론

자동차 엔진 흡기부의 ISA 유로 저소음 설계를 위하여 정성적 소음 예측식과 전산유체역학을 결 합한 방법을 사용하였다. ISA 유로 주위의 유동 특성을 해석한 결과 ISA 유로 출구부의 베인에 의하여 강력한 회전유동이 발생한다는 사실과 유 로의 꺽임부분 근체에서 급격한 유동 변화가 생긴 다는 것을 발견하였다. 이 결과를 바탕으로 베인 모양과 유로 꺽임 모양에 대한 좀 더 세부적인 비 교분석을 통하여 베인이 없는 것과 필렛을 준 유 로의 꺽임 몸양 좀 더 나은 유동특성 즉 소음예측 비례식에 인자로 사용되는 압력손실, 유동최고속 도, 난류운동에너지를 작게 만든다는 사실을 발견 하였다. 이 결과를 바탕으로 저소음 ISA 유로 설 계안을 제안하였다.

내분 공력소음의 예측은 외부공력소음과는 다 른 여러 특성들로 인하여 여전히 많은 어려움을 가지고 있다. 본 논문에서 사용한 내부 공력소음 예측 방법은 현재 가능한 여러 방법 중 가장 정확 성은 떨어지나 가장 비용이 적게 드는 방법으로서 현장에서 설계 초기 단계에 활용할 수 있는 효율 적인 방법으로 생각된다.

# 후 기

이 논문은 부산대학교 자유과제 학술연구비(2 년) 에 의하여 연구되었음.

### 참고문헌

(1) T. Colonius and S. K. Lele, "Computational aeroacoustics: progress on nonlinear problems of sound propagation," Progress in Aerospace Science, Vol. 40, pp. 345-416, 2004.

(2) G. Reethoff, "Turbulence-Generated Noise in Pipe Flow", Annu. Rev. Fluid Mech., Vol. 10, pp. 336-367, 1978.

(3) G.C. Chow and G. Reethoff, "A Study of valve noise generation process for compressible fluids," Winter Annu. Meet. Am. Soc. Mech. Eng., Ill. ASME Pap. 80/WA/NC-15, 1980.

(4) L. Driskall, "Control valve sizing with ISA formulas... how to apply the new standards," Inst. Technol. Vol. 21, pp. 33-48, 1974.

(5) J. Ryu, C. Cheong, S. Kim and S. Lee, "Computation of Internal Aerodynamic Noise from a quick-opening throttle valve using frequency-domain acoustic analogy," Applied Acoustics, Vol. 66, No. 11, pp. 1278-1308, 2005.