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ABSTRACT 
 

As the blood flow characteristics have been recognized to be closely related to various cardiovascular diseases, it is very 
important to predict them accurate enough in an efficient way. Thus, this paper proposes a one-dimensional spectral finite 
element model for the human blood vessels. The spectral finite element model is formulated in the frequency-domain by using 
the exact frequency dependent shape functions and applied to an ascending aorta. 

 

1. Introduction 
The blood flow characteristics determine the wall 

shear stress and wall tension. As the wall shear stress and 
wall tension are closely related to the cardiovascular 
diseases such as stenosis and aneurysm, it is very 
important to predict the blood flow characteristics 
accurately in an efficient way for the cardiovascular 
disease research, medical devise design and surgical 
planning. To this end, computational methods have 
merged as the powerful tools for the modeling and 
analysis of the blood flow and pressure in arteries. 

Modeling of blood flow and pressure has been studied 
intensively over the years, and various computational 
models have been reported in the references [1-8]. The 
one-dimensional (1D) models have been widely used 
because they can provide clinically relevant information 
on local mean blood flow and pressure waves through 
arterial systems very efficiently as well as the boundary 
conditions suitable for three-dimensional (3D) models [7, 
8]. For solving 1D models of blood flow, the two-step 
Lax-Wendroff method [3] and finite element method 
(FEM) [4-6] have been applied in the literature. Though 
FEM is a very powerful tool for solving diverse complex 
engineering problems, it is often inevitable to use very 
fine meshes to get improved analysis results, which 
drastically increases the computation cost. In contrast to 
conventional FEM, the spectral finite element method 
(SFEM) [9] is known as an exact element method in 
which exactly formulated frequency-dependent shape 
functions are used to formulate the spectral finite 
element models. Thus, in SFEM, one can get exact 
dynamic behavior of a 1D continuum system by 
modeling the whole uniform parts of continuum system 
as the single finite elements, regardless of their length. 

This may benefit us to drastically reduce the computation 
cost. This motivates this study to apply the SFEM to the 
modeling and analysis of the blood flows through human 
blood vessels. 
 

 
2. Governing Equation 

The 1D theory of arterial flow consists of a continuity 
equation, an axial momentum balance equation, and a 
constitutive equation for the flow in an impermeable, 
deforming, elastic domain as [2, 3] 
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where S is the cross-sectional area, Q is the 
volumetric flow rate, P is the pressure, ρ is the mass 
density of blood, ν is the kinematic viscosity of blood, E 
is the Young’s modulus of artery, and h is the wall 
thickness of artery. Sd(x) and rd(x) are the cross-sectional 
area and radius at diastole pressure Pd = 80 mmHg. The 
parameters δ and H are determined by the flow velocity 
profile over the cross-section of artery [2, 3]. Notice that 
the dot and the prime represent the derivative with 
respect to time t and coordinate x, respectively.  

Assume that the blood pressure and cross-sectional 
area can be written as 

( ) ( ) ( ) ( ) ( tx,pPtx,P,tx,sxStx,S dd += )+=       (2) 
where S0 is the cross-sectional area at the inlet of an 

artery and θ is a parameter representing the taper of an 
artery. By substituting Eq. (2) into Eq. (1) and using the 
assumption Sd(x) = S0 (1-θx) > s(x, t), we can obtain the 
approximated continuity and momentum equations as 
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where xc denotes the middle point of a tapered vessel and 
(k1, k2, k3) are given in Ref. [5]. 

 
 

3. Formulation of Spectral Finite Element 
Model 

Weak Form in Frequency Domain. Based on the 
discrete Fourier transform (DFT) theory, we can assume 
the time histories of p(x,t), Q(x,t), and f(x,t) in the 
spectral forms as 
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where pn(x), Qn(x), and fn(x) are the Fourier components 
of p(x,t), Q(x,t), and f(x,t), respectively; ωn = 2πn/T (n = 
0,1,2,…, N) where T is the period and N is the number of 
samples in the DFT theory. Substituting Eq. (6) into Eq. 
(3) yields the governing equations for Qn(x) and pn(x) as 
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where gn(x) are the Fourier components of g(x, t) = f′(x, 
t) and the following definitions are used. 
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Multiplying Eq. 7(a) by δQn(x), and Eq. 7(b) by δpn(x), 
integrating by parts, and finally using the relation 

derived from Eq. 3(a) yields the weak 
forms for the original governing equations. For instance, 
the weak form for Eq. 7(a) can be derived as follows: 
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Spectral Finite Element Model. To formulate the 
spectral finite element, we consider the linear 
homogeneous governing equations reduced from Eq. (7), 
for instance, as 

( ) 0122 =−+′′ nnnnn QiηωQc                     (10) 
subject to 
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The solution of Eq. (10) can be obtained in terms of the 
dynamic shape function matrix N(x, ωn) and the nodal 
degrees of freedom (DOFs) Qn = {Qn1  Qn2}T as 

( ) ( )[ ]{ }nn Qωx,N=xQn                      (11) 
where 
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Substituting Eq. (11) into Eq. (9) gives 
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Similarly, from the weak form for Eq. 7(b), we can 
derive 
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4. Numerical Result and Discussion 
We consider an ascending aorta as shown in Fig. 1, 

where r0 = 1.25 and L = 7 cm. The blood properties are 
given by ρ = 1.055 g/cm3 and ν = 0.046 cm2/s. The blood 
flow rate and pressure are computed by assuming that the 
blood flow rate at the inlet (i.e., x = 0) is given by Fig. 2, 
and the results are displayed in Figs. 3 and 4. 

Figure 3 shows the perturbed blood pressure p and 
blood flow rate Q at x = 3.5 cm obtained by assuming 
that the blood flow profile is uniform, parabolic, or 
boundary layered (uniform in the core region and linear 
in the boundary layer). Though there are not significant 
differences between different blood flow files, the 
uniform flow profile seems to provide the largest blood 

   
 

 



pressure and flow rate while the boundary layered flow 
profile provides the smallest values. 

 
 
 

 
 

Figure. 1 Geometry of a blood vessel 
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Figure. 2 Flow rate at the inlet of blood vessel. 

 
 
 
 

 

   
 

 

 
 
Figure. 3 Blood flow rate and pressure at x = 3.5 cm 

vs. blood flow profile. 

 
 

 
Figure. 4 Perturbed blood pressure vs. blood vessel 

taper. 
 

 
Figure 4 shows the effect of the blood vessel taper θ 

on the perturbed blood pressure at x = 3.5 cm when the 
blood profile is assumed as the boundary layered blood 
profile. It is obvious from Fig. 4 that the perturbed blood 
pressure becomes larger as the blood vessel taper 
increases.  
  Though it is not shown here due to the paper length 
limitation, we also have investigated the blood flow 
characteristics along the vessel axis. The present spectral 
finite element model is found to provide the results 
which accurately capture the wave characteristics of 
blood flow. 
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5. Summery 

In this paper, one-dimensional spectral finite element 
model is developed for human blood vessels. The 
spectral finite element model is formulated by using the 
frequency-dependent shape functions satisfying the 
linear governing equations in frequency-domain and the 
nonlinear terms are all treated as the pseudo-forces. The 
spectral element model is applied to the ascending aorta 
to investigate the blood flow rate and pressure for 
various flow profiles. 
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