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ABSTRACT

Fiber reinforced polymer(FRP) composite decks are new to bridge applications and hence not much literature 

exists on their structural mechanical behavior. As there are many differences between numerical displacements 

through static analysis of the primary model and experimental displacements through static load tests, system 

identification (SI)techniques such as Neural Networks (NN) and support vector machines (SVM) utilized in the 

optimization of the FE model. During the process of identification, displacements were used as input while stiffness 

as outputs. Through the comparison of numerical displacements after SI and experimental displacements, it can note 

that NN and SVM would be effective SI methods in modeling an FRP deck. Moreover, two methods such as response 

surface method and iteration were proposed to optimize the estimated stiffness. Finally, the results were compared 

through the mean square error (MSE) of the differences between numerical displacements and experimental 

displacements at 6 points.

1. Introduction

The use of Fiber Reinforced Polymer (FRP) as a 

primary structural material is developing rapidly in the 

construction industry. FRP materials have considerable 

advantages in terms of weight, strength and corrosion 

resistance. They have been used for several decades 

in the aerospace, automobile and marine industries, 

where they have developed a good record of 

accomplishment in very adverse environmental 

conditions. Although FRP composites are increasingly 

beingconsidered for use in civil engineering, their 

widespread use is constrained due to current 

consideration of higher initial cost, lack of 

comprehensive design approaches and guidelines, and 

the predominant use of a one-to-one replacement 

methodology that often restricts the full utilization of 

the characteristics of the material. The development 

of such new FRP composite bridge systems raises 

concerns related to the dynamic response, including 

under traffic loads, due to the mass and stiffness 

characteristics which are significantly different from 

those of conventional steel and structural concrete 

bridge structural components. Therefore, the 

technique of system identification is needed to update 

the finite element models of FRP decks. 

The identification of mathematical models of 

physical structures based onexperimental 

measurements is a problem that has been receiving 

increasing attention in the recent past. Numerous 

publications are available on the subject of system 

identification of structures [1-3]. The most familiar 

approaches for system identification are Neural 
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Networks and Support Vector Machine. NN has been 

used in identification for health monitoring [4] and 

damage detection [5]. M.Q. Feng and D.K. Kim et al 

[6] proposed a method to build baseline models for 

bridge performance monitoring using Neural Networks. 

An improved approach for nonlinear system 

identification using neural networks was proposed by 

P. Gupta and N.K. Sinha [7]. H.S. Tang et al [9] 

proposed an online sequential weighted Least Squares 

Support Vector Machine (LS-SVM) technique to 

identify the structural parameters and their changes 

when vibration data involve damage events that can 

be used for structural health monitoring. Support 

vector machines framework for linear signal 

processing was posted by J.L. Rojo-Alvarez et al 

[10]. 

The paper is organized as follows: Section 2 

expounds the theory of Neural Networks and Support 

Vector Machine used for system identification.In 

Section 3, static displacement tests are performed and 

primary finite element model is built, while the 

identifications of stiffness are discussed. Among 

which, the response surface method (RSM, Hou et al 

[16]) was utilized to optimize the results. Section 4 

Compares experimental displacements with numerical 

displacements before system identification and 

identified by NN and SVM. Conclusions are drawn in 

Section 5.

2. Technique of system identification

Identification is the determination, based on input 

and output, of a system within a specified class of 

systems, to which the system under test is equivalent. 

System identification usually consists of two 

stages--model selection, and parameter estimation. In 

neural network based identification, the selection of 

the number of hidden nodes corresponds to the model 

selection stage. The network can be trained in a 

supervised manner with a back-propagation algorithm, 

which is based on an error-correction learning rule. 

The error signal is propagated backward through the 

network. The back-propagation algorithm utilizes 

gradient descent to determine the weights of the 

network and thus corresponds to the parameter 

estimation stage. Neural networks are trained to 

approximate relations between variables regardless of 

their analytical dependency, they are usually referred 

to as model-free estimators.

2.1 Neural Networks

Rumelhart et al [8] reported the development of 

the back-propagation neural network (NN).NN is the 

most prevalent of the self-learning model of artificial 

neural networks. A simple architecture of NN 

consistsof an input layer, a hidden layer, an output 

layer, and connections between them (Fig. 1). Sigmoid 

functions are utilized as non-linear activation 

functions for all layers. 

The corresponding architecture for back- 

propagation learning is incorporating both the forward 

and the backward phases of the computations 

involved in learning process. The learning mechanism 

of this back-propagation network is a generalized 

delta rule that performs a gradient descent on the 

error space to minimize the total error between the 

actual calculated values and the desired ones of an 

output layer during modification of connection 

strengths. In other words, a least mean square 

procedure is carried out which finds the values of the 

connecting weights that minimize the error function 

by using a gradient descent method. 

In the back-propagation network, the error at 

output neurons is propagated backward to hidden 

layer neurons, and then to input layer neurons 

modifying the connection weights and the biases 

between them by a generalized delta rule. The 

modification of the weights and the biases in a 

generalized delta rule is used through a gradient 

descent of the error.
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Fig. 1. Structure of back-propagation neural network 

(Kim et al. [12])



2.2 Support Vector Machine

SVM can be applied to regression problem by 

introducing an alternative loss function. The basic 

idea of the SVM is to map the input data x i into a 

higher dimensional feature space φ (Aizerman et 

al.,[13]). That is, the SVMis to find the regression 

function that can best approximate the output and an 

error tolerance from input data (Fig. 2).

Fig. 2. Nonlinear SVM with ε- insensitive loss 

function (Yu et al.,[14])

3. Case studies

3.1 Experimental test

Two steel girders along the longitudinal direction, 

two smaller steel girders along the transverse 

direction bound the test model for static displacement 

tests of the FRP composite deck between vertical 

girders as shown in Fig. 3. Several FRP deck units as 

shown in Fig. 4 adjoin the FRP composite deck. All 

steel girders are using I-shaped. The static 

displacement experiment was performed for three 

times, in which displacements at 6 points were 

measured. The measured points and experimental 

results are as shown in Fig. 5 and Table 1.

Fig. 3. FRP Test Model
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Fig. 4. Unit module section

Fig. 5. Schematic of measured points

Table 1 Experimental displacements at 6 points (mm)

P1 P2 P3 P4 P5 P6

Test 1 0.1600 0.5100 2.3300 0.9200 0.2200 1.7600

Test 2 0.1500 0.4800 2.2900 0.9100 0.2300 1.7500

Test 3 0.1500 0.4800 2.2300 0.8800 0.2300 1.7000

mean 0.1533 0.4900 2.2833 0.9033 0.2267 1.7367

3.2 Primary finite element model

We selected Strand7 [11] as the finite element 

analysis tool, and a total of 172 beam elements, 

19,836 plate element and 19,261 nodes were used to 

model the test model as shown in Fig. 6. Plate 

element is extensively used, since the deck was made 

of FRP laminates. Table 2 shows material properties 

and geometric parameters that are their theory values 

used to build finite element model.



(a) without cross terms (b) saturated design with cross terms (c) central composite designok

Fig. 8. Design points for sampling

Fig. 6. Finite element model

Table 2 Material properties and geometric parameters

Item
Thickness

(mm)
EX

(GPa)
EY

(GPa)
vXY

GXY

(GPa)
ρ

(g/cm3)

Top 
Flange

18 15.83 14.86 0.253 4.457 1.9

Web 11 17.61 14.27 0.287 4.953 1.9

Bottom 
Flange

16 15.21 15.80 0.230 4.310 1.9

3.3 System identification

During the process of system identification, 

displacements at 6 different points was selected as 

input while stiffness (EX and EY)of flanges and web as 

output. It means that there are totally 6 input 

parameters and 6 output parameters. Here NN and 

SVM that work in the MATLAB [15] are utilized with 

collaboration of Strand7. The processing of SI was as 

following: Firstly, establishing training database by 

static analysis using the primary finite element model. 

Secondly, Training NN or SVM to obtain the 

estimated stiffness. Thirdly, inputting the estimated 

stiffness to the finite element model. 

3.4 Optimization methods

Response surface methodology (RSM) is a set of 

statistical techniques designed to find the optimized 

value of the response or toexamine the relationship 

between experimental responses and variations in the 

values of input variables. It is also used to optimize 

response quantities, which are influenced by several 

independent variables, because it provides simple 

models of complicated processes. Here two methods 

that are sampling point and iteration have been used 

to optimize the results. And the process of 

optimization was carried out as shown in Fig. 7.

Fig. 7. Optimization process

(1) Sampling point : one of response surface 

methods. In the design range of stiffness, firstly, only 

first-order approximation to g(X) (Eq. 1) was used for 

sampling, which resulted in 13 (6×2+1) evenly 

distributed design points. Secondly, six parameters of 

stiffness were changed simultaneously to form the 

upper and lower boundaries. Thirdly, tow kinds of 

second-order polynomial (Fig. 8 (b), (c)) were added 



in succession to find the most effective and efficient 

model, which can be described as Eq. (2).

g(X ) = ax+b (1)

g(X ) = a+ ∑
n

i=1
b ix i+ ∑

n

i, j=1
c ix ix j

+ ∑
n

i, j,k=1
c ix ix jx k ,  (n≥1)

(2)

(2) Iteration : In order to get results more 

accurate, the iteration method was utilized. Moreover, 

the staring training database was set to be 15 cases, 

which is more effective and efficient. Here 15 cases 

of training data mean the process of sampling point 

ending at the second step. The iteration was repeated 

for 5 times to obtain the trend of improvement.

4. Results and discussion

The results were discussed separately, as two 

methods that are sampling point and iteration were 

performed independently. For the purpose of 

comparing their accurateness, the mean square error 

which is the mean square value of differences 

between numerical displacements and experimental 

displacements at 6 points was compared as shown in 

Fig. 9, 10.

Here the horizontal axis is cases which means that 

comparing with experimental displacements. During 

the process of adding sampling point, there are four 

cases totally which are 13, 15, 27, 43 cases of 

training database. They are following the proceeding 

as described in the section of sampling point. In 

addition, the start-training database of iteration was 

selected as 15 cases. From the comparisons, we can 

note that results obtained by SVM have a trend of 

optimization either by adding sampling point or 

iteration. However, NN performs strangely since it 

has a different rule for making a decision response 

surface.

(a) Training data added sampling point

(b) Training data added iteration data

Fig. 9 Comparison of results obtained by SVM

(a) Training data added sampling point

(b) Training data added iteration data

Fig. 10 Comparison of results obtained by NN



5. Conclusions

As FRP is new to be utilized in the field of civil 

engineering, their mechanical properties are not well 

discussed. This paper proposed two methodologies 

that are NN and SVM in system identification of 

modeling a FRP deck. From the comparison of 

results, we can note that they are both effective in 

improving finite element models. However, they may 

perform differently when applying the response 

surface method. 

   For further studies, we would like to perform 

researches on two aspects. Firstly, the method of 

sampling point will be applied in combination with 

iteration. Secondly, numerical verifications should be 

done to verify which one of NN and SVM is more 

effective in estimating stiffness of FRP
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