영료감응형 태양전지의 TiO₂ 박막에 바이너드에 의한 투과율 특성

박정철1, 추순남1, 이우식1, 전용우2, 이성준3, 홍성진3

1경원대학교, 2성덕대학, 3영지대학교

Transmissivity Characteristics by Binder Contents in the TiO₂ for Dye-sensitized Solar Cells

Jung-Cheul Park1, Soon-Nam Chu1, Woo-Sik Lee1, Yong-Woo Jeon2, Sung-Joon Lee1, Sang Jeon Hong3

1Kyungwon Univ., 2Sungduk Coll, 3Myoengi Univ.

Abstract: In this paper, we have studied the optical properties of TiO₂ thin film by adding the additives of PEG, PEO and both of them. As a variable amount of additives was added into TiO₂, the transmittance of TiO₂ thin film was decreased. When the 20 wt% of additives mixed with PEG and PEO was added into TiO₂, the transmittance of TiO₂ thin film showed higher than that of 10 wt% of additives mixed with PEG and PEO. As a results, we could conclude that the additives makes pore in TiO₂ thin film and it improves the transmittance of TiO₂ thin film.

Key Words: transmittance, PEG, PEO, TiO₂

1. 서 론

최근 제조비가 높아 고효율의 태양전지의 개발이 요구되고 있는 연구가 진행되고 있는 것이 나노크리스

터의 전도성 얇게 포함하는 경로를 허용하는 정기화 얇게 설정된 것이 포함됨으로써, 비교적 용이하게 제작될 수 있고 가격이 저렴하며 공 속에 안정하여 유독하지 않다는 장점을 지니고 있어 광전파이도에서 각광받고 있다. TiO₂의 구조는 전체 태양전자의 효율과 밀접한 관련이 있으므로 이에 대한 많은 연구가 진행되었다. TiO₂는 비면적

을 높이기 위해 다수의 기공을 가진 구조로 제작되는데, 일반적으로 구조로 통할 수 있는 10μm 내외의 두께에 약 20nm 크기의 입자로 구성되며 이는 가용한 비면적을 갖고 고득률로 생의 효율을 높이기 위해 기공의 크기와 기공을 제거하는 방법이 효과적이다. 공기의 크기와 기공을 작정한 정도의 영향을 줄일 수 있다. 비면적은 태양전자의 투과분율을 감소시킴으로써 효율이 감소한다. 따라서 전체 전자의 고정율은 최적의 기공 크기와 기공률을 찾는 것이 중요하다. 이는 TiO₂ 클로이드 용액에 바이너드의 투과율을 조절함으로써 TiO₂막의 형

상을 제어할 수 있다고 보고되어있다.[3]

또한 자외선을 통수하는 TiO₂막은 영역의 측정을 잘

일으킬 수 있게 가시광선영역에서 높은 투과율을 가지는

이것은 박막의 구조와 밀접한 관련이 있다.

이에 본 논문에서는 Adjustable 바이너드 양에 따른 TiO₂막을 제작하여 TiO₂막의 기공의 크기와 기공률의 변화에

따른 미세구조를 살펴보고 투과율을 측정함으로써 막의

특성 변화에 관하여 고찰하였다.

2. 실험

TiO₂막을 제조하기 위해 P25 (Degussa, 평균입자크기:

21nm), DI water를 사용하였고 응집되어 있는 TiO₂ 나노입자를 분산하기 위해 연속성을 가진 Triton X-100(동

영)을 사용하였고 안정제로 Acetyl acetone(Aldrich)를 사

용하였다. 그리고 함유를 높이기 위해 밝혀서 어려고

여 두막의 구조를 변화시키기 위해 바이너드 PEG와

PEO를 함께하여 액체나사에 섞었다. 이 때 PEG와 PEO

는 TiO₂에 대해 각각 10wt%, 20wt%, 30wt%, 40wt%의

양을 각각 포함하였다. 또한 액체나사에 가미된 용액은 48시간 동안 아래의 탈색 처리를 이용하여 고정하고

TiO₂ 클로이드용액을 제조하였다.

이 용액은 TiO(Indium tin oxide) 클로이드 용액의 탈색 처리

를 이용하여 투과율을 측정한 후, 전기로에서 450℃에서 30

분 동안 조열하여 최종적으로 TiO₂막을 제조하였다.

TiO₂막의 두께를 측정하기 위해 UV/VIS Spectrophotometer (SHIM ADZU, UV-2401 PC)을 사용하여

막과의 미세구조를 관측하는 데에는 Scanning Electron Microscope (SEM, Hitachi, S-3500N)을 사용하였다.

3. 결과 및 고찰

그림 1,2,3은 바이너드 투과율에 따른 투과율 변화를 측정한

것으로 바이너드의 함량이 증가함수록 투과율은 감소하는

경향을 나타냈다. 이는 산정은 입자의 기공 크기와 입자의

분산이 될 때 반응의 입자들이 어려고 반응, 산정시키고

막의 두께가 두꺼운 투과율은 감소하는 것으로 생각

된다.

- 138 -
4. 결론
본 연구에서는 PEG와 PEO를 이용하여 바인더의 청가량에 따른 투과율 변화를 탐색하였다. PEG와 PEO의 각각 청가량을 변화 시온 결과, 일반적으로 청가량이 증가할수록 투과율은 감소하였고 PEG와 PEO를 혼합한 경우, 20wt%의 경우에는 10wt%보다 더 큰 투과율을 보였는데 이는 적절한 양의 기공과 기공률이 형성되어 나타나는 현상으로 판단된다. 또한 입자들의 분산의 영향에 의해서 이러한 결과가 나온 것으로 생각된다. 그러므로 고효율의 DSSC용 광전극 TiO2막을 만들기 위해 바인더의 적절한 양 및 입자의 분산, 가시광선에서의 높은 투과율을 위한 입자의 기공 크기와 분산도 고려해야 한다는 것을 보여준다.

참고 문헌