 출시라베리 리소그래피 방법을 이용한 2차원 포토닉 크리스탈 제작
구용은, 남기헌, 김현구, 최혁, 정홍배
광운대학교 전자재료공학과

Fabrication of 2-D photonic crystal with holographic lithography
Long-Yun Ju, ki-Hyun Nam, Hyun-Koo Kim, Hyuk Choi and Hong-Bay Chung

Abstract: In this paper, we fabrication of 2-D photonic crystal using holographic lithography. We used Ag doped chalcogenide As2GeTe2Sx film and He-Ne (632.8nm) (P-P) polarized laser beam. The thickness of Ag thin film was varied from 60nm and the thickness of chalcogenide thin film was varied from 2um. Frist, holographic lithography with 1-D photonic crystal on Ag/As2GeTe2Sx film. And then revolved the sample 90° to fabricate 2-D photonic crystal with holographic lithography.

Key Words : Photonic crystal, He-Ne laser, holographic, 2-D

1. 서론

 최근 정보통신 산업에서 가장 광 보편화 되는 프로세스는 빛을 이용한 기술, 즉 광기술이라 할 것 이다. 빛의 발생과 민감도를 증가하는 히트온 레이저 및 광섬유가 개발되면서 이러한 시도들이 이루어지기 시작하였으며, 이러한 빛의 민감도는 정보통신망에서 흥미로운 가능성을 가지고 있는 것으로 생각해 볼 때 당연한 균직이라고 할 수 있다. 광십호 처 리 기술로 광결정이 주목받고 있다.

광결정 (photonic crystal, photonic band gap materials) 또는 광절경은 이론에서 알 수 있듯이 빛을 제어 할 수 있는 결정구조의 물질이다. 광결정에 관한 연구는 1987년 미국의 두 이론작가 (Eli yablonovitch 와 Sajeev John) 이 밝힌 원고가 2차원 주기로 얽혀 있는 결정구조를 만들면, 특정 파장 (또는 주파수, 에너지)의 빛을 전반히 빠져나오지 않게 한다고 주장하면서 시작되었다.

광결정의 가장 중요한 특성은 광バンド-gap을 가지 특정 주파수 영역에서 빛의 전파가 불가능하다는 것이다. 반도체에 존재하는 전자적 표현을 갖고 있으며 반도체가 정보처리로서 사용될 수 있다는 점을 생각한다면, 광결정의 이러한 특성은 매우 유용하다고 할 수 있다. 더욱이 이러한 광결정의 주파수에서 광결정 물질의 광작용을 적절히 조절함으로써 쉽게 변화시킬 수 있다는 점에서, 광결정 물질은 기존의 전자 소자보다 더 좋은 특성을 나타내는 물질이라고 할 수 있다.

그림 1에 보이는 본 연구에 사용된 이론의 파동기능자의 특성은 As2GeTe2Sx의 광학적 특성을 가지고 있다. 이론적으로는 광결정을 제작하고, 광결정을 이용하여 광결정 형성체로의 1차 방향 복원 효율을 측정하여 결정형성체의 광학적 특성을 분석할 것이다.
3. 결과 및 고찰

그림 2는 홀로그라픽 방식에 의한 2차원 광결정 형성도이다. 그림에서 불수 있으면 두의화(2nd order)를 중심으로 삼각형으로 1차회절범(1st order)이 생성되는 것을 알 수 있다. 이것은 2차원 광결정이 형성되었음을 증명한다.

![그림 2-D 광결정 형성도](image)

그림 3은 홀로그라피 방법으로 1-D 광결정 형성시 1st order에 의한 회절효과를 나타낸 그래프이다. 그래프에서 볼 수 있듯이 1-D 광결정 형성 시 회절효과는 3800s 부근에서 1.62%를 나타냈다.

![그림 1-D 광결정 형성 시 회절효과](image)

4. 결론

본 논문에서는 홀로그라피 라소그래피 방법으로 3-D 광결정 제작을 위한 2-D 광결정을 제작하였다. 1차원 광결정 형성시에는 1.62%의 회절효과를 나타냈으며 2차원 광결정 형성시에는 0.17%의 회절효과를 나타냈다. 회절효과의 경우 1차원 광결정 형성에서 감소한 것은 1차원 광결정 형성 시 생긴 회절형(2nd, 3rd, ...) 때문에(총 광량의 세기가 변하지 않으므로) 2차원 광결정 형성 시 효과가 감소된 것으로 여겨 된다.

감사의 글

This research was supported by the MIC (Ministry of Information and Communication), Korea, under the ITRC (Information Technology Research Conter) Support program supervised by the IITA (Institute of Information Technology Advancement)(IITA-2007-0701-0018)

참고 문헌