SrTiO₃/유기물 복합재료의 유전특성에 실란 커플링 처리의 효과
김주영*, 강상현, 유휘재, 이우성
전자부품연구원, 전자소재 패키징 연구센터

Effect of Silane Coupling Treatment on Dielectric Properties of Strontium Titanate/Organic Composite
Jun Young Kim*, Sang Hyun Kim, Myong Jae Yoo, Woo Sung Lee,
Korea Electronics Technology Institute, Electronic Packaging Center

Abstract : 실란 커플링제 종류에 따른 SrTiO₃/유기물 복합재료의 유전특성에 미치는 영향을 조사하여 비교하였다. 실란 커플링제는 amino계, epoxy계, methacryloxy계, acryloxy계, vinyl계를 사용하였으며, tape casting 방법으로 제작한 복합체 밀 độ를 vacuum lamination 공정을 통하여 기판을 만들어 유전특성을 측정하였다. 실란 커플링제의 종류에 따라 유전특성은 상이한 결과를 나타내었으며, acryloxy계를 제외한 다른 커플링제를 처리한 복합재료는 유전상수가 유전손실이 감소하는 경향을 확인할 수 있었다. Acryloxy계 커플링제를 처리한 복합재료는 커플링제가 처리되지 않은 복합재료에 비해 유전상수가 6% 정도 증가하였으며, 유전손실은 25% 정도 감소하였다.

Key Words : Silane coupling agent, Strontium titanate, Composite, Dielectric property

1. 서 론
전자 산업의 발달로 인하여 전자부품의 소형화, 경량화는 매우 중요한 기술 요소로 주목 받고 있다. 이를 위하여 전자부품의 많은 면적을 차지하는 수용소자들을 다층화용접 기판(multi-layer circuit board)에 내장시킨 내장형 수용소자(embedded passive) 기술이 연구되고 있다.

Inorganic/organic 복합재료는 유기기판을 내장형 커플링제로 양면 연구가 진행되고 있는 재료이다. 공정도가 낮고 경제적인 유기물에 높은 유전상수를 갖는 무기물이 복합되어 있는 형태이다. 부품의 소형화를 위해 조립할 공간에서 높은 축열효과가 요구되므로 높은 유전상수를 갖는 밸런트의 개발이 필요하다.

Inorganic/organic 복합재료의 유전상수를 높이기 위해서는 사용하는 유기물과 무기물의 유전상수를 높이거나 높은 유전상수를 갖는 무기물의 함량을 증가시켜야 한다. 하지만 복합재료는 무기물의 아연을 일정한 양에서 유전상수가 최대가 되고 그 이상의 무기물 함량을 높이면 유전상수가 증가하지 않고 오히려 감소하는 경향이 나타난다. 이러한 경향의 원인은 무기물의 함량이 일정해 이상으로 증가하면 분산성 저하에 따라 porosity, void이 형성되어 유전상수가 낮아지고 품질과 같은 신뢰성에 문제가 야기하는 것으로 알려져 있다.

본 연구에서는 이러한 문제점을 개선하기 위하여 무기물 표면에 화학적 결합으로 고정되어, 분산성, 추출물 증가 등의 효과가 있는 다양한 실란 커플링제를 무기물 복합 부考える 것으로 전처리하여 이들의 화합에 따른 복합재료의 유전특성에 미치는 영향을 비교하고 조사하였다.

2. 실험
 실험에 사용된 무기물 재료는 Strontium titanate (SrTiO₃, density : 5.57), 유기 물 재료는 열가성 소화 수지와 기판재를 혼합하였으며, 무기물 재료의 표면 처리 실험에 사용된 실란 커플링제의 화학적 구조와 영향은 표 1과 같다.

<table>
<thead>
<tr>
<th>Functional Group</th>
<th>Product Name</th>
<th>Structural formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epoxy</td>
<td>KBM403</td>
<td>(CH2=CH2)2Si(CH3)2</td>
</tr>
<tr>
<td>Methacryloxy</td>
<td>KBM503</td>
<td>(CH2=CH2)2Si(CH3)2</td>
</tr>
<tr>
<td>Amino</td>
<td>KBM603</td>
<td>(CH2=CH2)2Si(CH3)2</td>
</tr>
<tr>
<td>Acryloxy</td>
<td>KBM103</td>
<td>(CH2=CH2)2Si(CH3)2</td>
</tr>
<tr>
<td>Vinyl</td>
<td>KBM1003</td>
<td>(CH2=CH2)2Si(CH3)2</td>
</tr>
</tbody>
</table>

표 1. 실란 커플링제의 화학구조 및 영향

실란 커플링제의 SrTiO₃ 복합 표면처리는 다음과 같이 진행되었다. 각각 정지된 양의 실란 커플링제를 적절한 양의 에탄올과 종료용 혼합 용액에 SrTiO₃ 본질을 희석하여 병합(3시간)을 통해 종료하는 본질에 SrTiO₃를 80°C에서 녹여서 처리한 후 최종적으로 150°C에서 30분 열처리를 하였다. 이렇게 처리된 SrTiO₃ 본질을 용매와 함께 1차 임직을 24시간 동안 무기물과 가교재 널을 후 다시 24시간 병합 하
여 혼합한다. 혼합한 슬러리를 tape casting공정을 이용해 일정한 두께의 필름으로 재작하였다. 이렇게 재작한 필름을 경화온도210℃ 압력 9.7kgf/cm²으로 vacuum lamination으로 복합재료로 재작하였다. 유전상수와 유전손실은 일본 AET사의 Microwave Dielectrometer와 미국 HP사의 HP 4291A RF Impedance/Material analyzer를 사용하여 1GHz에서 측정하였다.

3. 결과 및 고찰

여러 종류의 실린 커플링제 협력에 따른 유전특성의 효과를 조사하기 위하여 커플링제로 처리되지 않은 볼을 동일한 부피비와 방법으로 복합재료로 재작하여 커플링제를 처리한 복합재료와 유전특성을 비교하였으며, 유전상수 변화는 그림 1과 같다.

![그림 1. 다양한 실린 커플링제에 따른 유전상수 변화](image)

그림 1의 결과는 실린 커플링제를 처리하지 않은 복합재료는 유전상수가 17.8이었으며, acryloxy계 커플링제를 처리한 복합재료의 유전상수가 19.9로 약 6%의 증가량을 확인할 수 있었으며, acryloxy계 커플링제를 제외한 다른 커플링제 처리는 오히려 유전상수가 감소하였다.

![그림 2. 다양한 실린 커플링제에 따른 유전손실 변화](image)

그림 2는 여러 종류의 커플링제의 처리에 따른 복합재료의 유전손실의 변화를 보여준다. 커플링제를 처리한 모든 복합재료의 유전손실이 감소하였지만 acryloxy계를 제외한 다른 커플링제는 유전손실의 감소에 따른 결과로 판단할 수 있다.

그림 3은 SEM을 이용하여 관찰한 것으로 여러 종류의 커플링제를 처리한 복합재료의 단면 모습을 보여준다. Acryloxy계, vinyl계 커플링제를 제외한 다른 커플링제를 처리한 복합재료가 처리하지 않은 복합재료보다 본알의 음직과 pore나 void가 더욱 많이 형성되었음을 관찰할 수 있었다.

![그림 3. 복합재료의 단면 SEM 사진](image)

4. 결론


참고 문헌
