(Zn_{1-x}Mg_x)_2SiO_4:Mn 형광체의 제조와 발광특성

이지영, 유일
동의대학교 물리학과

Preparation and Luminescent properties of (Zn_{1-x}Mg_x)_2SiO_4:Mn phosphors
Ji-Young Lee, and Il Yu
DONG-EUI UNIVERSITY PHYSICS

Abstract: PDP용 녹색 Zn_{2}SiO_{4}:Mn 형광체의 발광특성과 결정성을 향상시키기 위해 co-dopant로 Mg를 첨가한 (Zn_{1-x}Mg_x)_{2}SiO_{4}:Mn형광체를 합성하였다. 합성된 형광체의 발광특성을 PL로 조사한 결과, Zn_{2}SiO_{4}:Mn 형광체는 Mg의 농도에 관계없이 530nm에서 녹색 발광을 하였고, Mg의 농도가 0.5 mol%일 때 가장 높은 발광세기가 나타났다. 이것은 Zn과 이온 반경이 비슷한 Mg가 환경에서의 Mn용으로의 에너지 전이가 증가하여 발광세기가 증가한 것으로 생각된다.

Key Words: Zn2SiO4, Luminescence, Mg

1. 서론

최근 PDP(Plasma Display Panel)용 Zn_{2}SiO_{4}:Mn 녹색 형광체에 대한 연구가 활발히 진행되고 있다. 형광체는 단성 (host)으로 블라인드 약 10um 크기의 미세결정에 발광센터 역할을 하는 활성제(Activator)가 소량 분산 함유된 분말형태의 물질이며, 외부로부터 에너지 전이 또는 자발으로 흡수하여 특유한 파장을 갖는 발광센터로 전환시키게 된다. PDP의 경우 He 및 Xe의 펜싱가스 (penning gas)로부터 발생하는 147nm의 전공자와섬을 이용하여 사용한다. Zn_{2}SiO_{4}:Mn 형광체는 녹색영역인 525nm 부근의 발광파장 을 가짐으로, 위도 및 석순도 등에서 우수한 발광특성을 나타내는 것으로 알려져 있다. PDP에 적용하고자 하는 형광체는 높은 발광 효율과 적절한 발광시간이 요구되며, Zn_{2}SiO_{4}:Mn 형광체는 형광체의 층으로 CRT용으로 사용되어온 형광체로 석화래가 우수해 다른 녹색 형광체보다 표현할 수 있는 색다리를 크게 증가시키는 장점을 가진다.[1] Zn_{2}SiO_{4}:Mn은 Willemite 구조로서 두 개의 Zn 이온이 결정학 자 내에서 다른 위치로 배치되어 있으며, Zn_{2}SiO_{4}:Mn은 Mn 이온이 그 자리를 차지하고 있다. Zn_{2}SiO_{4}:Mn의 발광결정은 활성제인 Mn이온의 3d^6 전자의 전이로의 끝으로 설명되며, 특히, 가장 낮은 에너지대에 T_{1}에서 바닥상태 높이의 전이를 녹색 발광의 원인이 된다. 또한 블론 전공시간은 Mn 이온이 두 개의 다른 위치에 있는 Zn 이온과 치환하여 밝을 이루는 확률이 높아져서 발생한다고 본 연구에서는 고성반응법을 통하여 (Zn_{1-x}Mg_x)_{2}SiO_4:Mn 형광체를 제조하였고, Mg의 농도 변화에 따른 Photoluminescence (PL)를 측정하여 co-dopant로서 Mg가 Zn_{2}SiO_4:Mn 형광체에 미치는 영향을 조사하였다.

2. 실험

그림 1은 고성반응법에 의한 Zn_{2}SiO_4:Mn 형광체 제조의 계적적인 공정도를 나타낸다. 그림 1에서와 같이 (Zn_{1-x}Mg_x)_{2}SiO_4:Mn 형광체는 오염의 활성제로 ZnO (99%), SiO_2 (99%), MnSO_4·H_2O (99.99%), MgSO_4 (99%), 용제로 NH_4Cl (99.99%)을 출발 원료로 사용하였다. Mn의 농도는 8 mol%, 용제로 사용되는 NH_4Cl의 농도는 15 mol%로 고정하였다. x의 농도를 0.0-0.75 mol% 까지 변화시켜 (Zn_{1-x}Mg_x)_{2}SiO_4:Mn 형광체를 제조하였다. 병합과정을 통해 균일하게 흩날린 분말을 1300℃에서 4시간 동안 공기중에서 일반적인 고성반응법으로 형광체를 형성하였다. 합성된 형광체의 Photoluminescence (PL)은 여기광원으로 Nd:YAG LASER (LASERPHOTONIC Co.) 355nm를 사용해 발광특성을 조사하였다.
3. 결과 및 고찰

그림 2는 (Zn1-xMgx)2SiO4:Mn 형광체의 x의 농도 변화에 따른 PL 스펙트럼의 변화를 나타내었다. 530nm 부근에서 녹색발광은 Zn2SiO4:Mn 형광체에서 Mn2⁺의 4T1 → 4A2 주황선에 기인한다. 그림에서의 (Zn1-xMgx)2SiO4:Mn 형광체는 Mg의 농도에 상관없이 모두 530nm 부근에서 녹색 발광을 하였고, Mg의 농도가 0.5 mol%에서 최고 발광강도를 나타내었다. 이것은 Zn2⁺과 Mg2⁺의 동시에 역할을 하는 결과로, Zn2⁺의 활성화가 두려우며, Mn2⁺와의 상호작용이 증가하여 발광이 증가한 것으로 생각되며진다. (Zn1-xMgx)2SiO4:Mn 형광체에서 Mg의 농도가 0.5 mol% 이상에서는 그림에서의 높은 발광이 증가하는 것으로 보수된다. 이 같은 발광세기의 감소는 Zn2SiO4:Mn 형광체에서 co-dopant의 농도가 증가함에 따라 에너지 전달의 흐름이 방향이 바뀌어 높은 농도의 경우에 더 커져 에너지 전달의 효과가 높아진 결과로 설명되며, 높은 농도의 경우에 발광은 감소하는 것으로 생각되며진다.

4. 결론

(Zn1-xMgx)2SiO4:Mn 형광체는 1300℃에서 4시간 동안 고성분 성장으로 제조되었다. 형광체의 발광특성을 관찰한 결과, Mg의 농도에 관계없이 530nm 부근에서 녹색발광을 하였고, Mg의 농도가 0.5 mol%에서 형광체의 발광강도는 최고를 나타내었다. 이것은 Zn2SiO4:Mn 형광체에서 Zn2⁺이온이 Mn2⁺로 존재하던 Mn2⁺의 전이가 증가하게되어 발광세가 증가한 것으로 생각되며진다.

5. 참고문헌