T-P07

Properties of Mg doped GaAs Epitaxial Layers Grown Subjected to Rapid Thermal Annealing

Jonho Kim¹, Ho Jin Park¹, Do-yeob Kim¹, Sumin Jeon¹, Minhyun Jeon¹, H. H. Ryu¹, J. Y. Leem¹*, Jong Su Kim², D. Y. Lee³

¹Department of Nano System Engineering, Institute of Nano Manufacturing, InJe University, Gimhae, Korea

²Nano Photonics Group, Advanced Photonics Research Institute, Gwangju, Korea

³LM Research and Development, Samsung Electro-mechanics.Co.,Ltd, Suwon, Korea

We investigated the optical and electrical properties of Mg doped GaAs epitaxial layers grown on semi-insulator GaAs (100) made by molecular beam epitaxy (MBE) with different doping concentrations. The samples were grown by varying two growth parameters such as growth temperature (460~580°C) and arsenic (As) beam equivalent pressure (BEP) (7.4×10⁻⁶~1.6×10⁻⁵Torr) in order to obtain the optimum condition of p-type doping. And the samples were annealed by various RTA temperature (550°C, 600°C, 650°C, 700°C, 750°C). The structural and optical properties of Mg-doped GaAs layers were measured by double crystal x-ray diffraction (DCXRD) and photoluminescence (PL), respectively. Hall and capacitance voltage (C-V) measurements were employed to investigate the electrical properties of Mg doped GaAs layers at room temperature. The results indicate Mg can be used well controllable p-type dopant on the GaAs epitaxial layers for nano structure devices.