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1. Introduction

Most of problems in real life situation such as
economics, engineering, environment, social
sciences and medical sciences not always involve
crisp data. So we cannot successfully use the
traditional methods because of various types of
uncertainties presented in those problems. Since
Zadeh [17] introduced fuzzy sets in 1965, many
approaches and theories treating imprecision and
uncertainty have been proposed. Some of these
theories, like as intuitionistic fuzzy set theory and
interval-valued fuzzy set theory and
valued fuzzy theory,

extensions of fuzzy set theory and the others try

interval-

intuitionistic set are
to handle imprecision and uncertainty in different
ways. Some authors [3,6] pointed out that there
is strong connection between intuitionistic fuzzy
interval-valued

fuzzy sets, 1ie,

intuitionistic fuzzy set theory and interval-valued

sets and

fuzzy set theory are equipollent generalizations of
fuzzy set theory.

Some authors have investigated interval-
valued fuzzy set and its relevant topics, for
example, Burillo and Bustince [4] researched

entropy and distance for interval-valued fuzzy
sets, Grzegorzewski [7] studied distance between
interval-valued fuzzy sets based on the Hausdorff
metric, Zeng and Li [20] studied the relationship
between entropy and similarity measure of
interval-valued fuzzy sets. In this paper, we give

a geometrical interpretation of the interval-valued
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set and take three
parameters describing the interval-valued fuzzy

fuzzy into account all
set. So, based on the geometrical background, we
propose distance
interval-valued fuzzy sets and compare these
with above-mentioned distance
measures proposed by Burillo and Bustince [4]
and Grzegorzewski [7], respectively. Furthermore,
we extend three methods for measuring distances

new measures  between

measures

between interval-valued fuzzy sets to
interval-valued intuitionistic fuzzy sets.
2. Distances between Interval-valued
intuitionistic fuzzy sets

As a generalization of the notion of

intuitionistic fuzzy sets, Atanassov and Gargov
(3] introduced interval-valued
intuitionistic fuzzy sets in the spirit of interval-

the notion of
valued fuzzy sets.

An
(IVIF set, for short) A on a universe X is an

interval-valued intuitionistic fuzzy set

object having the form
A:{(fo[A(I)vNA(T)) T E X} P

where M,: X — [I] and Ns: X — [I] denote,
respectively, membership function and non-
membership  function of A and  satisfy

0 < Myy(x)+N,y(X) <1 for any = € X.
Let IVIF(X) denote all interval-valued fuzzy
sets on -Y. Even though we can represent a

fuzzy set in an intuitionistic-type representation,
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we can not always represent any interval-valued

fuzzy set in interval-valued intuitionistic-type
representation. For example, let 4 be an inter-
valued fuzzy set in X={z} such that
i1 7yl Ly (L 3
Al/l“[4’2]»’I}m(MA,MA)—([4:2]v 2)4])
is not an IVIF set because

My+ E}AL' = '1‘

5 +% #Z1 . However, if an IVF set

A satisfy the condition M+ My <1 ie.

Miy+1—My <1 | then the interval-valued fuzzy
A represent interval-valued

set can

intuitionistic-type representation (MA,/VI a) .

We extend the Burillo and Bustince’s distances

to IVIF sets. For any two IVIF sets
A={(z;, My(z;),Ny(z;)): T € X} and
B = {(z;, Mp(z;),Np(z:)) : = € X} of the

universe of discourse X= { z,,2,,*-,x, },
* the Hamming distance d, (A4, B) :
, 1 n
di'(A,B) = ZZ[MIAL(%)_AIBL(%)I‘F
=1
Mgy (z;) — My, ()| +1N4 (2;) — Np, ()]
+|NAu(-Ti)—NBu(z;)|]; 2)
* the normalized Hamming distance !, (4, B) :
, 1 n
L'(A,B) = EE{M'{AL(S&) — My (z:) |+
[ My (i) — Mpy(z:)| + | Nag(z;) — Npg, (z:) ]
+ | V() — Npy(z:)l],

* the Euclidean distance e, (A4, B) :

e/ (A.B) = (+ 33[(Manle)) = M) +

®3)

(f‘l,lu('lfi ) - 1”/)1/(11‘ ) )? +( /VAL(zi) — Np, (xi) )2

1
+ (Nap(z:) — Npu(2:))?]} 2.
* the normalized Euclidean distance ¢ (4, B) :

(4)

n

S UAM(z:) = Myl ) +

A

. 1
G (A.B) = {E

(M) = Mpo(e) ) + (Nag(z;) — Npg () )

F(Vple) = Vool )2 1HE, (5)

Now, we consider the amplitude margin to
modify these distances.

* the Hamming distance o,"(4.53) :

176

n

E[M/[AL(zi) — My (z:) |+

i=1

=1

4
| My (z;) — Mpy(z)| + | Nypai) — Nag () |

+ [Ny (@) = Npu () + | Wiy ()

= Wag(z:) |+ [ Wy () — Whg (i) 1], (6)

* the normalized Hamming distance 1, (4, B) :

” 1 &

L"(A,B) = EZ;HMAL(I:') — My ()| +
|Myy(x;) = Mpy(a) |+ Ny (z;) — Ny,
(z;) ] + N4y (z;) — Ngy (z; )] +|Ww, (z;)

— Wiy, (@) 1+ 1Wy (z;) — Wy, (z,) 1],

* the Euclidean distance e," (4, B) :

d\"(4,B)

(7)

e (4, B) = {1 (M, (2,) — My (a))2+

(Myy(z;) = Mpy(z;) )2 +( Ny (z;) — Ny
(2:) ) +(Nyy(z;) — Npy(z; )2 +

(W, (z;) — Wiy, (= N2+ ( Wy, (z;) —

L

Wy, (z:))?} 2. (8)
* the normalized Euclidean distance ¢," (4, B} :

0" (A, B) = (=S (Myy ;) ~ My, () +

=1

(Myy(z;) = Mpy(z;) )? +( Ny (7)) = Ny
(z;) ) +(Nay(z;) — Npy (=) +
(W, (z;) — Wy (z; N2+ ( Wy (z;)—
Wv,,(-'ﬂi N (9)
Clearly these distances satisfy the conditions of

the metric (cf. [8]). Finally, we extend the
Grzegorzewski's distances to IVIF sets as
(M-(?). For any two IVIF sets
A= {(1,"M,4 (zi ):NA (:l:i )) Lz € X} and
B={(z;, My(z,;),Ng(z;)): =, € X} of the
universe of discourse X = {zq, z5,-,2, },

* the Hamming distance d, (A, B) :

dy (A, B) = = 3| max { M ()

1=1
=My (x) | [ Myy(z;)~ Mpy(z;)1} +
maxi | W (x; )~ Ng, ()1,
“VAIL’(J‘:‘)_/VBU(JI,)’}]- (10)

* the normalized Hamming distance ! (A4.B):

"

(A B) = 5= S0 max {117, (,)

= i 1
S My (e Vb LM e, Y = M (e M)+
maxi Ny Lo bV e 0
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INAU(zi)_NBU(zi)]}]r (11)

* the Euclidean distance ey (A4, B) :
en(4,B) = {3 N (max (M, (,)
i=1

—Mpy(z:) |, |Myy(z;) = Mpy(z)1})°+
(max{lNAL (z,—)—NBL (xi){,

|Nyy(z:) = Ngy (2} DA},

e the normalized Euclidean distance gy (4, B) :

(12)

(4, B) = (L 51 max (1M, (z:)

t=1

~ Mg (z.) |, |May(z;)— Mpy(z;)})+
(max{lN,u, (xi)—NBL(xi)l;

1
[Ny () — Ny ()1 1)} 2 (13)
Proposition 1. Let X={=z,,z,--,z,} be a

finite universe of discourse. Then function
dyg Ly, eq, qn : IVIF(X)—RYU {0} given by
(10)-(13), respectively, are metrics.
Proposition 2. For any two IVIF sets
A={(z;, My(z;),Ny(z;)): z, € X} and
B:{(z.‘;MB(-T..‘):NB(I,‘))Z T, € X} of the
universe of discourse X= {z,, 25 ,z,}, the
following inequalities hold:
dy(A,B)<n, (14)
ly(A,B)<1, (15)
ey(A,B)< /n, (16)
au(A,B)<1. (17)
Proposition 3. For any two IVIF sets
A={(z;, My(z;),Ny(z;)): z; € X} and
B= {(x.‘;MB(Ii );NB(xi ) z, € X} of the
universe of discourse X= { 2,2y, ,z,}, the
following inequalities hold:
d’(A,B)<dy,(A,B)<d" (A,B), (18)
I (A,B)<l, (A, B)Y<l," (4,B), (19)
e/ (A, B)<ey(A,B)<e,” (A4,B), (20)
@' (4,B)=<qy(A,B)=<q" (4, B). (21)

When generalizing any notion it is desirable
that the new object should be consistent with the

primary one and it should reduce to that primary

one In some particular cases. As it was
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mentioned above each IVF set can be IVIF set
under some conditions.
Thus it would be desirable that our definitions

(2)-(13) should reduce to the Burillo and

Bustince’s distances, our distances and

Grzegorzewski’'s  distances, respectively, for

ordinary IVF sets. One can check easily that

Proposition 4. For any two IVIF sets

A,Be X={m,zy -~ ,x,} such that

A={(z;, My(z,;),Ny(z;)): 2, € X} and

B={(x,,Mg(z,),Ng(z;)): z;, € X}, the

following equalities hold:
d'(A,B)=4d,'(A,B), (22)
1'(A4,B) =1,(4,B), (23)
e'(A,B)=¢,'(A,B), (24)
q'(4,B)=q(4,B), (25)
d” (A,B)=d,” (A,B), (26)
1”(4,B)=1," (A,B), (27)
e” (A,B)=¢," (4,B), (28)
q"(4,B)=q," (4,B), (29)
d, (A,B) =dy (4, B), (30)
1,(A,B)=14(A, B), (31)
e, (A4,B)=-¢ey,(A,B), (32)
@ (4,B) =g, (4, B). (33)

Remark 1. Since intuitionistic fuzzy sets and
IVF sets are equipollent generalizations of fuzzy
sets, our definitions (2)-(13) should also reduce to
the Szmidt and Kacprzyk’'s distances [11] and
Grzegorzewski ‘s distances [7], respectively, for
ordinary intuitionistic fuzzy sets.

3. Conclusions

this paper, we propose new distances
between IVF sets by taking into account three
parameters describing an IVF set. We compare
these distances with distances proposed by Burillo
and Bustince and Grzegorzewski,

In

respectively.

Furthermore, extend three methods for

measuring distances between IVF sets to IVIF

we

sets and show that these reduce to the Burillo

and Bustince’s distances, our distances and

Grzegorzewski’'s distances, respectively, for

ordinary IVF sets.
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