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Abstract 

In this study, a mathematical model for a thermal analysis of a flat heat pipe with a grooved wick structure is 
presented. The effects of the liquid-vapor interfacial shear stress, the contact angle, and the amount of liquid 
charge have been included in the proposed model. In particular, the axial variations of the wall temperature and 
the evaporation/condensation rates are considered by solving the one-dimensional conduction and the augmented 
Young-Laplace equations, respectively. In order to verify the model, the results obtained from the model are 
compared to existing experimental data. 

Nomenclature 
Ar aspect ratio of the groove 
Dh  hydraulic diameter, m 
fRe  Poiseuille number 
h  heat transfer coefficient, W/m2 K 
hfg     specific heat of vaporization, J/kg 
P  perimeter, m 
δ  liquid film thickness, m 
Γ  mass flow rate, kg/s 
γ  contact angle 

1. Introduction 

Miniature and conventional heat pipes with axial 
grooves can be successfully used in electronic components 
cooling systems [1]. As the power density of critical 
electronic components is increased, the need for a heat 
pipe with a higher thermal performance is increased. 
Jacobs and Harnett [2] predicted that chip heat fluxes in 
mainframe computers will exceed 100 W/cm2 by the year 
2000. Cao et al. [3] noted that heat fluxes generated by 
metal oxide semiconductor controlled thyristors are 

already in the range of 100 W/cm2 to 300 W/cm2. 
 Several researchers have experimentally shown that 

flat heat pipes with axial capillary grooves could be 
applied in the cooling of high heat flux electronic devices 
[3-5]. Plesch et al. [4] performed a limited investigation of 
copper-water heat pipes with overall dimensions of 7 
mm×2 mm×120 mm with a series of 80 axial rectangular 
capillary grooves machined on the inner surface. Power 
was uniformly applied to both wide evaporator walls over 
a surface area of 2 cm2 and removed at the condenser by a 
constant temperature (42oC) coolant flow. A maximum 
heat flux was found of 35 W/cm2 in the horizontal 
orientation and 60 W/cm2 in the vertical orientation where 
the condenser was above the evaporator. Cao et al. [3] 
tested an 82-mm long copper-water flat heat pipe with 
overall dimensions similar to the Plesch et al. heat pipe. 
The capillary structure consisted of a series of axial 
rectangular grooves along the entire inner perimeter of the 
heat pipe and the vapor passage cross-sectional area was 
approximately 4 mm2. A maximum heat flux obtained was 
restricted by the capillary limit and reached 18.3 W/cm2 
with a positive inclination angle of 20o. Hopkins et al. [5] 
performed experimental and theoretical analysis for 
copper-water flat heat pipes with overall dimensions of 
13.41 mm×8.92 mm×120 mm with a series of 62 axial 
rectangular capillary grooves machined on the inner 
surface. Maximum heat fluxes with a uniform heat load 
applied to both sides were found to be 92.8 W/cm2 in the 
horizontal orientation and 141.8 W/cm2 in the vertical 
orientation, respectively. However, the theoretical results 
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for the maximum heat flux in the horizontal orientation 
underestimated the experimental results by as much as 35 
percent. 

Many researchers have suggested analytical models 
which are simple one-dimensional models based on the 
differential form of the Laplace-Young equation to 
characterize the thermal performance of micro/miniature 
heat pipes with various cross sectional and groove shape 
[6-9]. However, these models employ many simplifying 
assumptions to facilitate the analysis. First, evaporation 
and condensation are assumed to occur uniformly in the 
axial direction. Secondly, it is also assumed that 
evaporation occurs in the only evaporator section and 
condensation occurs in the only condenser section inside 
the heat pipe. Finally, the wall temperature is either 
assumed to be constant or excluded in the analysis. These 
assumptions may lead to significant errors for predicting 
the thermal performance of the heat pipe. Therefore, the 
axial variations of the wall temperature and the 
evaporation and condensation rates should be taken into 
account to precisely predict the fluid flow and heat transfer 
phenomena in micro/miniature heat pipes. 

The purpose of the present study is to develop a 
mathematical model for precisely predicting fluid flow 
and heat transfer phenomena in a flat heat pipe with a 
grooved wick structure. The effects of the liquid-vapor 
interfacial shear stress, the contact angle, and the amount 
of liquid charge are included in the proposed model. In 
particular, the axial variations of the wall temperature and 
the evaporation and condensation rates are considered by 
solving the one-dimensional conduction equation for the 
wall and the augmented Young-Laplace equation, 
respectively. In order to verify the model, the results 
obtained from the model are compared to existing 
experimental data. By using the suggested model, the 
effect of the amount of liquid charge on the thermal 
performance of the flat heat pipe is also examined. 

2. Mathematical Model 

2.1 Governing equations 
The system being studied herein is a flat heat pipe with 

rectangular grooves, as shown in Fig. 1. The governing 
equations are derived under the following assumptions: i) 
one-dimensional steady incompressible flow along the 
length of the heat pipe; ii) one-dimensional temperature 
variation for the wall of the heat pipe along the axial 
direction; iii) negligible convection in the liquid and vapor. 
In order to establish the governing equations the heat pipe 
is divided into a series of small control volumes (CV) of 
length, dx. The continuity equations for the liquid and 
vapor regions are expressed as follows: 

, , 0v
v i v i v

duV P A
dx

− = ,   in the vapor region           (1) 

, , 0l
l i l i l

duV P A
dx

− − = ,   in the liquid region           (2) 

, , , ,v v i v i l l i l iV P N V Pρ ρ=                              (3) 

Vv,i, Pv,i, Av, uv, Vl,i, Pl,i, Al, ,ul denote the averaged 
interfacial velocity and perimeter at the liquid-vapor 
interface, cross-sectional area, and the axial velocity for 
the vapor region and the averaged interfacial velocity 
and perimeter at the liquid-vapor interface, cross-
sectional area, and the axial velocity for the liquid region, 
respectively. From the mass continuity across the 
interface, as shown in Eq. (3), the averaged interfacial 
velocity for the liquid phase can be expressed as 

,
, ,

,

v v i
l i v i

l l i

P
V V

N P
ρ
ρ

=                                  (4) 

The averaged interfacial velocity, Vv,i is obtained by 
solving the augmented Young-Laplace equation. Details 
are explained in the next section. 
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Fig.1 Schematic diagram of a flat heat pipe 
 
The conservation of axial momentum equation for an 
incompressible vapor flow is written as 

( ), , , ,2 0v v
v v v v w v w v i v i v

du dpA u P P A
dx dx

ρ τ τ− − + − =             (5) 

where τv,w and τv,i are the wall and interfacial shear 
stresses in the vapor region, respectively. Since the 
present model is one-dimensional, information about 
these shear stresses is unknown. To compute these shear 
stresses, the vapor flow is assumed to be similar to fully 
developed duct flow. For a rectangular vapor channel 
configuration the wall and interfacial shear stresses can 
be defined using the following equation [10]. 
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∑

∑

  (6) 

Equation (7) represents the conservation of momentum 
equation for the liquid flow in a groove with cross-
section area, Al. 

( )2
,

2 Rel l l
l

h l

dp u f
dx D

µ
= −                             (7) 

For the liquid flow the inertial effects are negligible in 
comparison to those due to viscous losses [8]. The values 
of (fRe)l can be taken from the correlation suggested by 
Schneider and DeVos [11]. 
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where (fRe)l0 corresponds to the case of no liquid-vapor 
interaction.
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In the present study, the axial variation of the wall 
temperature is taken into account. In most previous 
models, the wall temperature is either assumed to be 
constant or excluded in the analysis. This assumption may 
lead to significant errors for predicting the thermal 
performance of the heat pipe when the working fluid of 
the heat pie is overcharged or the wall thickness is 
relatively large. The conservation of energy equation 
including the heat pipe wall conduction is given as 

2

, ,2 0w
s s v v i v i fg w w

d Tk A V P h q P
dx

ρ ′′− + =                     (9) 

where ks, As, Tw, Pw, and q″w are the thermal conductivity, 
the cross-sectional area, and temperature of the heat pipe 
wall, the outer wall perimeter of  the heat pipe, and the 
heat flux at the wall, respectively. The heat flux profiles at 
the wall can be expressed as follows: 

( )
( ) .

, 0
0,

,

in w e e

w e e a

w amb e a t

Q P L x L
q x L x L L

h T x T L L x L

⎧ ≤ ≤⎪′′ = < < +⎨
⎪ ⎡ ⎤− − + ≤ ≤⎣ ⎦⎩

           (10) 

h denotes the local heat transfer coefficient between the 
external surface of the heat pipe and the ambient in the 
condenser section. In addition, the present model 
considers the heat transfer in the liquid block region. In the 
liquid block region, condensation dose not occur because 
the vapor region and grooves are filled with the liquid. 
Kim et al. [9] mentioned that the liquid block acts as a 
thermal barrier for the condensation heat transfer due to its 
lower thermal conductivity. However, heat is still 
transferred by conduction from the liquid to the wall of the 
heat pipe. The heat rate per unit length by conduction can 
be obtained by solving the 2D conduction problem with 
geometry and boundary conditions as shown in Fig.2. 

( )( ) ( ) ( )
( )

1

1

1 1 cos2
tanh

n

b f v w
n

nNQ k T T x
n n H S

π
π π

+∞

=

+ − −
′ = − ∑        (11) 

Therefore, the conservation of energy equation is divided 
into two regions and Eq. (9) can be rewritten as 

2

, ,2

2

2

0, 0

0,

w
s s v v i v i fg w w t b

w
s s b w w t b t

d Tk A V P h q P x L L
dx

d Tk A Q q P L L x L
dx

ρ
⎧

′′− + = ≤ ≤ −⎪⎪
⎨
⎪ ′ ′′+ + = − < ≤⎪⎩

    (12) 

The interfacial radius of the meniscus curvature is related 
to the pressure difference between the liquid and vapor by 
the Laplace-Young equation, which, in differential form, is 

2
v l c

c

dp dp dr
dx dx r dx

σ
− = −                             (13) 

Equations (1), (2), (5), (7), (12), and (13) constitute a set 
of five first-order and one second-order nonlinear coupled 
ordinary differential equations in 7 unknowns: uv, ul, pv, pl, 
Tw, dTw/dx, and rc. The boundary conditions used at the 
beginning of the evaporator section are 

,min0c cx
r r

=
=                                   (14) 

0 0
0l vx x

u u
= =
= =                                (15) 

( ) ( ) ,min0 0
,v sat v l sat v cx x

p p T p p T rσ
= =
= = −              (16) 

,0
0

, 0w
w w ex

x

dTT T
dx=

=

= =                          (17) 

Here pv is taken to be the saturation pressure of the vapor 
at temperature, Tv. If a heat pipe is transport heat, a 
minimum capillary radius should be formed at the 
beginning of the evaporator section and a maximum 
capillary radius at the point where the liquid block starts in 
the condenser section [5]. It is assumed that the maximum 
capillary radius equals the hydraulic radius of the vapor 
region at x = Lt - Lb [8], which is regarded as the 
convergence criterion of the capillary radius. Equations (1), 
(2), (5), (7), (12), and (13) with boundary conditions are 
solved numerically using the fourth-order Runge-Kutta 
method. 
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(a) Entire cross section      (b) Computational domain 
Fig. 2 Schematic cross section of the liquid block region 

 
2.2 Determination of the evaporation/condensation rate 

Most previous models have used the assumptions that 
evaporation and condensation occur uniformly in the axial 
direction, evaporation occurs in the only evaporator 
section, and condensation occurs in the only condenser 
section [6-9]. However, these assumptions are no longer 
valid when the wall temperature varies along the axial 
direction or evaporation or condensation occurs inside the 
heat pipe in the adiabatic section. Vadakkan et al. [12] 
showed that there is no adiabatic section inside the heat 
pipe from their numerical result. The evaporation and 
condensation rates are obtained by solving the augmented 
Young-Laplace equation in the present study. 
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Fig. 3 Cross sections of liquid-filled groove 

 

2.2.1 Evaporation region 
In this section, an evaporating film on a heat-loaded 

surface is considered, as shown in Fig. 3(a). The 
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extended meniscus formed on the heated wall is 
characterized by three regions: i) the adsorbed film 
region, where this film cannot be evaporated due to the 
high adhesion forces; ii) the evaporating thin film region, 
so called micro-region, where the major part of 
evaporation occurs; iii) the meniscus region, where the 
adhesion forces are negligible and the meniscus 
curvature radius is constant. In the evaporating thin film 
region, a one-dimensional laminar boundary layer 
approximation for the transverse liquid flow is used (see 
Fig. 3). The mass flow rate is given as 

3

0 3
l

l l
l

dpu d
ds

δ δρ η
ν

Γ = = −∫                         (18) 

where νl is the kinematic viscosity. Following Wayner et 
al. [13, 14], the evaporative mass flux is modeled as a 
function of the temperature and pressure jumps at the 
interface according to the expression 

( ) ( )evap v l vm a T T b p pδ′′ = − + −                      (19) 

where Tδ is the temperature of the liquid-vapor interface 
and Tv is the temperature of the vapor. The liquid-vapor 
interfacial temperature and the wall temperature are 
related by the one-dimensional conduction heat transfer 
equation as follows: 

w
l evap fg
T Tk m hδ

δ
− ′′=                              (20) 

Following Moosman and Homsy [15], Eq. (19) and Eq. 
(20) may be combined to eliminate Tδ in favor of Tw: 

( ) ( )
1

1 fg
evap w v l v

l

ah
m a T T b p p

k
δ

−
⎛ ⎞

′′ = + − + −⎡ ⎤⎜ ⎟ ⎣ ⎦
⎝ ⎠

           (21) 

The continuity equation for the evaporating liquid layer is 

evap
d m
ds
Γ ′′= −                                    (22) 

Substituting Eqs. (18) and (21) into Eq. (22), the coupled 
differential equation can be written as 

( ) ( )
1

31 1
3

fgl
w v l v

l l

ahdpd a T T b p p
ds ds k

δ δ
ν

−
⎛ ⎞⎛ ⎞− = + − + −⎡ ⎤⎜ ⎟⎜ ⎟ ⎣ ⎦⎝ ⎠ ⎝ ⎠

   (23) 

In the evaporating thin film region, the pressure difference 
between the vapor and liquid at the liquid-vapor interface 
is due to both the capillary and disjoining pressure, and is 
expressed using the augmented Young-Laplace equation 
[13]: 

3 222

2 1v l d
d dp p p
ds ds
δ δσ

−
⎡ ⎤⎛ ⎞− = + +⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥⎣ ⎦

                 (24) 

where the first term on the right-hand side is known as 
the disjoining pressure and the second term on the right-
hand side is the capillary pressure which is the product of 
interfacial curvature, K and surface tension coefficient, σ. 
The vapor pressure is assumed to be constant along the s-
axis. The disjoining pressure is expressed as 

3
dp A δ=                                    (25) 

where A is the dispersion constant and δ is film thickness. 
In the present study, A is taken from the theoretical 
results of Wayner [16] and 5.942×10-21 J. Differential 
Eqs. (23) and (24) must be solved for four variables: δ, δ′, 
(pv – pl), and (pv – pl)′ in the interval from s = 0 to s = l 
with their respective boundary conditions: 

00 0
, tan

s s
δ δ δ γ

= =
′= = −                           (26) 

( ) ( )00
0

, 0v l v ls
s

p p K p pσ
=

=

′− = − =                   (27) 

where K0 is the curvature in the meniscus region and γ is 
the contact angle. The value of δ0 is found from Eq. (24) 
when the disjoining pressure is negligibly small compared 
with the capillary pressure in the meniscus region (pd ≈ 10-

5pc0). Although the initial-value problem, Eqs. (23) and 
(24) with B.C.s Eq. (25) and (26), is completely 
determined, its solutions must satisfy one more condition: 

0evap s l
m

=
′′ =                                    (28) 

Since the length of the evaporating thin film region is not 
specified. As a result of this problem, the evaporative mass 
flux profile in the evaporating thin film region can be 
obtained, as shown in Eq. (21). 
In the meniscus region, the liquid-vapor interfacial 
temperature is almost the same as the vapor temperature 
and the disjoining pressure is negligible. The governing 
equation and boundary conditions are 

3 222

02
1 1

1d dK
ds ds
δ δ⎡ ⎤⎛ ⎞

⎢ ⎥= + ⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

                         (29) 

1

1 1 1

00
1 10

, tan , tan
2s

s s l

d d
ds ds
δ δ πδ δ γ

=
= =

= = ≈
             (30) 

The evaporative mass flux in the meniscus region is 
l w v

evap
fg

k T Tm
h δ

−′′ =                               (31) 

Therefore, the averaged interfacial velocity in the 
evaporation region can be expressed as 

1

, 10 0
,

2 l l

v i evap evap
v v i

NV m ds m ds
Pρ

⎡ ⎤′′ ′′= +⎢ ⎥⎣ ⎦∫ ∫
                 (32) 

2.2.2 Condensation region 
At the condensation region, the condensing film is 

divided into two regions, as shown in Fig. 3(b): i) a thin 
film region at the fin top; ii) a meniscus region of the 
constant curvature. Analyzing heat transfer in the thin film 
region, simplifying assumptions are employed. One is that 
the film thickness variation along the s-axis is weak. The 
other is that the disjoining pressure gradient along the film 
flow can be neglected in comparison to that of the 
capillary pressure. From these assumptions, the governing 
equation and boundary conditions for the film thickness at 
the fin top are given as 

( ) ( )
13

3
3 1

3
fg

w v l v
l l

ahd d a T T b p p
ds ds k

σ δδ δ
ν

−
⎛ ⎞⎛ ⎞

= − + − + −⎡ ⎤⎜ ⎟⎜ ⎟ ⎣ ⎦
⎝ ⎠ ⎝ ⎠

  (33) 

3 2

3 2
0 20 2

10, , tan
2s s Tcs s T

d d d d
ds ds ds r ds
δ δ δ δ π γ

= == =

⎛ ⎞= = = = − −⎜ ⎟
⎝ ⎠

(34) 

The boundary value problem, Eq. (32) with B.C.s Eq. (34), 
is solved approximately by introducing the following 
polynomial function for the film thickness. 

( ) ( )
4

0
1

2 n
n

n
s C C s Tδ

=

= + −∑                        (35) 

From the boundary conditions Eq. (35) the values of the 
coefficients are 
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( ) 1 2 1
1 2 3 4 1 4 3

1

2tan 2 , 1 2 , 4 ,
8c

C C LC C r C C L C
L

π γ −
= − − = = = − (36) 

In order to determine the coefficient, C0, the condition 
that the total mass flow rate must be equal to the total 
amount of fluid condensed in the region 0 ≤ s ≤ T/2 is 
used. Integrating Eq. (33) and then substituting Eq. (35) 
into Eq. (37), C0 can be obtained. 

( ) ( )3 3 23 3
3 3 0

2 03 1

T w v l v

fgl s T s

l

a T T b p pd d dsahds ds
k

σ δ δδ δ
ν δ= =

⎡ ⎤ − + −
− = −⎢ ⎥

⎢ ⎥⎣ ⎦ +
∫

  (37) 

By using Eq. (35), the condensation mass flux profiles in 
the thin film region can be obtained as 

( ) ( )
1

1 fg
cond w v l v

l

ah
m a T T b p p

k
δ

−
⎛ ⎞

′′ = + − + −⎡ ⎤⎜ ⎟ ⎣ ⎦
⎝ ⎠

           (38) 

Heat transfer problem for the meniscus region in the 
condensation region is very similar to that in the 
evaporation region. The condensation mass flux in the 
meniscus region is written as 

l w v
cond

fg

k T Tm
h δ

−′′ =                               (39) 

Therefore, the averaged interfacial velocity in the 
condensation region can be expressed as 

12

, 10 0
,

2 T L

v i cond cond
v v i

NV m ds m ds
Pρ

⎡ ⎤′′ ′′= +⎢ ⎥⎣ ⎦∫ ∫
                (40) 

 
2.3 Solution procedure 

When the heat pipe with a rectangular grooved wick 
structure is to transport its maximum amount of heat, a 
minimum capillary radius at the beginning of the 
evaporator section is defined as the following equation. 

,min 2cosc
Sr
γ

=                                 (41) 

However, if the heat pipe is to transport a certain 
amount of heat, which is smaller than the maximum heat 
transport rate, it is expected from physical insight that 
the capillary radius at the beginning of the evaporator 
section is larger than that written in Eq. (41). Therefore, 
when the input heat load is given, the complete solutions 
for Eqs. (1), (2), (5), (7), (12), and (13) can be obtained 
by determining the minimum capillary radius which 
satisfies the convergence criterion. When the minimum 
capillary radius is given as Eq. (41), the complete 
solutions for the governing equations can be obtained by 
determining the maximum input heat load which satisfies 
the convergence criterion. 

3. Results and Discussion 

In order to validate the present model, the wall 
temperature profiles and the maximum heat transport rate 
obtained from the model are compared with the 
experimental results of Hopkins et al. [5]. Geometric 
parameters of the experimental copper-water heat pipe 
and other relevant specifications of the experiment are 
summarized in Table 1.  

Table 1 Specification of the flat heat pipe 
W (mm) 13.41 N (ea.) 62 
D (mm) 8.92 Le (mm) 15.6 
W0 (mm) 4.875 L (mm) 70.0 
D0 (mm) 0.61 Lc (mm) 34.4 
H (mm) 0.42 Qin (W) 0 – 120 
S (mm) 0.2 Tv (oC) 60 – 95 
T (mm) 0.1 Liquid Fill (ml) 0.84 (40%)
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Fig. 4 Comparison of the results obtained from the 
model with experimental results of Hopkins et al. [5]  

Figure 4 shows the comparison between the results 
from the model and experimental data. The results from 
the present model are in close agreement with the 
experimental data for the wall temperatures and the 
maximum heat transport rate with maximum errors of 
2% and 5%, respectively. Figure 5 illustrates the axial 
wall temperature profile for Qin = 100 W and Tv = 90 oC. 
According to the results from the present model, the 
liquid block length of the flat heat pipe used in 
experiments makes up about 58 percent of the condenser 
section. A substantial overcharging of the working fluid 
causes a large temperature drop in the liquid block region, 
as shown in Fig. 5(a). The heat rate per unit length 
profile along the axial direction is represented in Fig. 
5(b). As we expected, evaporation and condensation rates 
are not uniform but varied along the axial direction. In 
the adiabatic section, heat transfer by evaporation or 
condensation takes place inside the heat pipe. Therefore, 
the assumption that evaporation occurs in the only 
evaporator section and condensation occurs in the only 
condenser section is no longer valid in this case 
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Fig. 5 Wall temperature and Heat rate profiles  

3.1 Effect of the amount of liquid charge  
As mentioned before, the increase of the liquid block 

length results in a large temperature drop. To examine 
the effect of the amount of liquid charge on the thermal 
performance of the flat heat pipe, the filling ratio, which 
is defined as the ratio of the liquid volume to the empty 
volume inside the heat pipe, is varied from 0.29 to 0.475. 
When the filling ratio is 0.29, the liquid block length is 
zero and the liquid block length is equal to the condenser 
section length for the filling ratio of 0.475. For 
evaluating the thermal performance of the heat pipe, the 

2117



   
 

maximum heat transport rate and the thermal resistance 
as the objective functions are chosen. The thermal 
resistance, R, is defined here as the overall end cap to 
end cap temperature drop divided by the input heat load. 

( ), ,w e w c inR T T Q= −                              (42) 
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Fig. 6 Effect of the filling ratio on Qmax and R 

 
Figure 6 illustrates the effect of the filling ratio on the 
maximum heat transport rate, Qmax and the thermal 
resistance, R. As the filling ratio increases, Qmax slightly 
increases. This is because flow resistance decreases due 
to the decrement of the effective length of the heat pipe. 
The thermal resistance increases with increasing the 
filling ratio. When the filling ratio is 0.475 (Lb = Lc) Qmax 
is enhanced up to about 19% compared with that for the 
filling ratio of 0.29 (Lb = 0). On the other hand, the 
thermal resistance is increased by about 160% compared 
with that for the filling ratio of 0.29. This means that the 
larger the filling ratio, the worse the thermal performance 
of the heat pipe. Hence, the thermal performance of the 
heat pipe is maximized when the filling ratio is 0.29 (Lb 
= 0). 

4. Conclusion 

A mathematical model for precisely predicting the 
thermal performance of a flat heat pipe with a grooved 
wick structure is developed.. The results obtained from the 
proposed model are in close agreement with existing 
experimental data for the wall temperatures and the 
maximum heat transport rate. From the validated model, it 
is found that the assumptions employed in most previous 
may lead to significant errors for predicting the thermal 
performance of the heat pipe. Finally, the effect of the 
amount of liquid charge on the thermal performance of the 
flat heat pipe is examined. As the amount of liquid charge 
increases, Qmax slightly increases due to the decrement of 
the effective heat pipe length, while thermal resistance 
remarkably increases with increasing the amount of 
liquid charge. The thermal performance of the heat pipe 
is maximized when the liquid block length is zero. 
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