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Abstract 

It has been confirmed that implementation of the no-slip boundary conditions for the lattice-Boltzmann 
method play an important role in the overall accuracy of the numerical solutions as well as the stability of the 
solution procedure. We in this paper propose a new algorithm, i.e. the method of the dynamic boundary 
condition for no-slip boundary condition. The distribution functions on the wall along each of the links across 
the physical boundary are assumed to be composed of equilibrium and nonequilibrium parts which inherit the 
idea of Guo’s extrapolation method. In the proposed algorithm, we apply a dynamic equation to reflect the 
computational slip velocity error occurred on the actual wall boundary to the correction; the calculated slip 
velocity error dynamically corrects the fictitious velocity on the wall nodes which are subsequently employed 
to the computation of equilibrium distribution functions on the wall nodes. Along with the dynamic self-
correcting process, the calculation efficiently approaches the steady state. Numerical results show that the 
dynamic boundary method is featured with high accuracy and simplicity. 

Nomenclature 
tδ : time step size 
xδ : lattice spacing unit 

ν : kinetic viscosity; 
ρ :  fluid density 
τ : relaxation time 
αe :    discrete velocity vector 

sc :  speed of sound 

αf :   partical mass distribution function 
)(eqfα : equilibrium distribution function 

Re : Reynolds number 
u :     fluid velocity 
R : gas constant 
T : temperature 
αω : weighting factor 

 

1. Introduction 

Lattice-Boltzmann method (LBM) has been an 
alternative, promising fluid dynamic computational 
platform. In the development of LBM, there are still 
several problems open to further improvement. The 
implementation of the no-slip boundary condition has 
been confirmed that plays an important role in the overall 
accuracy of the numerical solutions as well as the 
stability of the solution procedure. There are various 
approximate methods for the treatment of no-slip 
boundary condition. Among them, the most 
representative methods are bounce-back method [1], 
Yu’s method [2, 3] and Guo’s method [4]. The present 
study is devoted to no-slip boundary condition with the 
implementation of dynamic boundary treatment, and 
tests have been given along with the mentioned three 
methods for 2-D channel Poiseuille flow, oscillating 
Couette flow and lid-driven cavity flow. 
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2. Lattice-Boltzmann Method 

We employed the incompressible D2Q9 (9-bit two-
dimensional) BGK model in present study for simplicity 
proposed by He et al [5]. The evolution equation is 

( ) ( ) ( ) ( )1, , , ,eqf t t t f t f t f tα α α α αδ δ
τ
⎡ ⎤+ + − = − −⎣ ⎦X e X X X   (1) 

In above equation, τ  is the dimensionless collision 
relaxation time, X  is the coordinate of lattice node, 

αf  and eqfα  are the particle mass distribution function 
and equilibrium distribution function along the thα  link, 

respectively. eqfα  is given by: 

( ) ( )2
0 2 4 2
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where, u  is fluid velocity, ρ  is the fluid density, sc is 
the sound speed and αe  is the discrete velocity vector, 
which on D2Q9 square lattice space is 
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Fig.1   Discrete velocity vector of D2Q9 lattice 
 

Here /c x tδ δ= , xδ  and tδ  are the lattice spacing 
unit and the time step size, respectively. Figure 1 shows 
the discrete velocities of the D2Q9 lattice. αω  is the 
weighting factor: 

4 / 9 0
1/ 9 1, 2,3, 4
1/ 36 5,6,7,8

wα

α
α
α

=⎧
⎪= =⎨
⎪ =⎩

    (4) 

The density and mass flux can be evaluated as: 
8 8

0 0

eqf fα α
α α

ρ
= =

= =∑ ∑                (5) 

8 8

0 0

eqf fα α
α α

ρ ∂ ∂
= =

= =∑ ∑u e e          (6) 

In the computation, Eq. (1) can be solved by two steps, 
collision step and streaming step. 

Collision step: 

( ) ( ) ( ) ( )1, , , ,eqf t f t f t f tα α α ατ
⎡ ⎤= − −⎣ ⎦X X X X   (7) 

Streaming step: 
( ) ( ), ,f t t t f tα α αδ δ+ + =X e X    (8) 

where ~ denotes the post-collision state of the 
distribution function. It is noted that the collision step is 
local and the streaming step involves no computation. 

 

3. Dynamic Boundary Condition 

In general, to finish the streaming step, the distribution 
functions at the boundaries need to be specified after the 
collision step during evolution of the computation. 
Similarly to Guo’s extrapolation method, we 
decomposed the distribution function at a wall node 
along the links across the physical boundary into its 
equilibrium and nonequilibrium parts. While the 
nonquilibrium part is approximated using a first-order 
extrapolation based on the nonequilibrium part of the 
distribution function on the neighboring fluid nodes, the 
equilibrium part is approximated by employing a 
dynamic equation to auto-correct the fictitious velocity 
on the solid nodes. 

Refer to Fig. 2. In order to obtain ,sfα , the distribution 

function on node “ S ” along thα  link, we split it as, 

, , ,
eq ne

s s sf f fα α α= +      (9) 
The equilibrium part is calculated by   (10) 
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Fig.2   Layout of the lattices near the boundary 

 
The nonequilibrium pare is proposed to use 

1 2, , ,(1 )ne ne ne
s f ff f fα α αβ β= + −    (11) 

where sρ is approximated to be equal to 1fρ , β  is a 

parameter to be determined, and su  is solid node 
fictitious velocity value need to be chosen, here, it is 
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given from the dynamic equation: 

( )os
w w

du
r u u

dt
= −      (12) 

where wu  is the desired wall velocity specified on the 

boundary wall node “W ”. o
wu  is the calculated present 

wall velocity. Equation 12 can be written in a discrete 
form as follows. 

( )n o o
s s w wu u r t u uδ= + −    (13) 

Here, 1tδ = , the factor r  is the relaxation factor, 
which of large value can accelerate the convergence of 
computation. So if o

wu  is larger than the desired wall 

velocity, wu , then the solid node velocity o
su  is 

decreased, as should be reasonable. 
Now the present wall velocity can be computed by 

using an extrapolation method with the given velocity at 
“ 1f ”, “ 2f ” and “ 3f ”. Δ  is the fraction of an 
intersected link in the fluid region. We use one among 
the following three extrapolations depending on the 
availability of 3fu  and 2fu . 
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⎪
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⎪
⎪
⎪
⎪ = +Δ +Δ −Δ +Δ + Δ +Δ
⎩

(14) 

 

4. Computational Assessment 

For assessment of the proposed dynamic method in 
implement of no-slip boundary condition, we applied the 
present method to several flow problems. 2-D Poiseuille 
flow and oscillating Couette flow are tested to check the 
spatial, temporal accuracy as well as stability. The cavity 
flow is calculated to test the ability to handle geometric 
singularity. The results are compared with those obtained 
by using other three boundary methods. 

 
4.1 2-D Poiseuille flow 

The lattice system for 2-D Poiseuille flow is specified 
as shown in Fig. 3. For the upstream boundary condition, 
we applied parabolic profile given by Eq. (15) which is 
corresponding to the exact solution of the fully-
developed channel flow. The bounce-back scheme was 
applied for this velocity boundary. The normal 
coordinate y  has its origin at the bottom wall and its 
discrete value is given by 1jy j= − + Δ . cy  is the 

value of y  at the channel center, ny  the grid number 
of LBM calculation domain height, 1 2H ny= − + Δ  the 
grid number of fluid domain height, the length of 
channel 4 1L ny= + . The maximum velocity maxu  is 
fixed at max 0.01u = . For the downstream boundary, we 
applied no-flux condition to implement the constant 
average-density along the normal y  direction and the 
full-developed-flow properties. 

2
max( ) ( ) 4 ( ) /( 1 2 )in exact cu y u y u y y y ny= = − − + Δ  (15) 

 

 
Fig.3   Lattice system for 2-D Poiseuille flow 

 
Implementation of the boundary conditions on the 

solid walls, which is the main issue of this study, is given 
by the proposed dynamic method and other three 
methods, bounce-back scheme, Yu’s method and Guo’s 
method. For dynamic method the particular parameters 
are given 0.1, 0r β= = , quadratic extrapolation is 
employ to calculate the wall velocity. To assess the 
computational error of the LBM solution, the numerical 
value of the slip wall velocity on the solid wall is 
computed. Because the true wall velocity in the 
Poiseuille flow is zero, then the value of wall slip 
velocity wu  provides a measure of the accuracy by 
applying different boundary methods. Here, the 
numerical wall slip velocity is calculated by using the 
2nd -order extrapolation scheme at the central station 

/ 2i L= . 
1 1(1 )(2 ) ( ,1) (2 ) ( ,1) (1 ) ( ,3)
2 2wu u i u i u i= +Δ +Δ −Δ +Δ + Δ +Δ (16) 

The normalized slip velocity is then given by 
/ ( )w w cU u u y= . Figure 4 is the normalized wall slip 

velocity with respect to different grid number H  along 
y  direction by applying four different boundary 

treatments. The normalized slip velocity calculated by 
present method is much smaller than those by other 
schemes. Actually, the slip velocity value got by 
applying present method is on the order of 1510− . This is 
on the same order of random machine error. So we  
suppose that there is nearly no numerical slip velocity 
error by applying present method to the no-slip boundary 
of Poiseille flow. 
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Another accuracy assessment is quantified by the root-
mean-square of the difference (RMS- ε ) between the 
normalized velocity obtained form the numerical 
computation and that from the analytic solution at the 
central station. 

( ) 2 2
max

1

1 ( ) /
ny

in LBM
j

u y u y u
N

ε
=

= −⎡ ⎤⎣ ⎦∑   (17) 

 
Fig.4 Convergence of wall slip velocity using different 

boundary methods in Poiseuille flow. 
( max0.5, 5, 0.01uτΔ = = = ) 

 
Fig.5 Dependence of RMS-ε  on H in Poiseuille flow. 

( max0.5, 5, 0.01uτΔ = = = ) 

 
Fig.6 Dependence of RMS-ε  on boundary position Δ  

in Poiseuille flow 
 

Figure 5 shows the RMS- ε  by applying different 
methods. Although these lines are of the similar slop, the 
magnitude of RMS- ε  by present method is pretty small. 
In Fig. 6, the RMS-ε  is given according to different 
position of physical wallΔ . The result by present method 
shows not only small error value but also provides a 
much less dependence onΔ . 

 
4.2 Oscillating Couette flow 

For a oscillating Couette flow which is shown in the 
following figure, the bottom wall is oscillating defined 
by 0 0(0, ) sin( )u t U wt φ= + , the length of the channel is 

4L H= . The exact solution is given by 

0 sin( )y
exau U e wt yλ λ−= −    (18) 

where / 2wλ υ= ,υ  is the kinetic viscosity in lattice 
unit. In present study, we set 0 0φ = , 1, 0r β= = , 

0 0.01U = . The simulation results in Fig.8 show that the 
present method can obtain more accurate result in 
treating this fluid problem. 

 
Fig.7 Sketch for oscillating Couette flow 
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Fig.8 Dependence of RMS- ε  on H in oscillating 

Couette flow.  
 

4.3 Lid-driven Cavity flow 
In order to check the flexibility of present method to 

the singularity problem, we apply it to the boundary 
implement of lid-driven cavity flow (Fig. 9). The results 
are obtained by applying Guo’s and present methods 
under following parameter setup, 0 0.01U = , 51L = , 

0.5Δ = , 0.8τ = , Re 5= , and 0.1, 0r β= =  
especially for present method. Figure 10 shows a very 
good agreement between these two methods’ results. But 
during the implement of present to this fluid problem, the 
corners of the cavity need special care for the stability 
problem. Use quadratic extrapolation to get the dynamic 
wall velocities is considered to be not very suitable at the 
singular points. We’d better seek more reasonable, e.g. 
exponential, function in obtaining the wall velocity to 
fulfill the calculation of fictitious solid node velocity. 

 
Fig. 9 Lattice system for 2-D lid driven cavity flow 

 
Fig. 10 Comparison of u  and v  velocities along 

vertical or horizontal centerline of lid-driven cavity 
flow by Guo’s and present methods.  
 
 

5. Conclusions and Future Discussions 

We demonstrated that the new proposed dynamic 
boundary treatment has good ability to get higher 
accuracy. It also turned out that there still exist several 
problems open to further improvement, the choice of 
function to evaluate the wall slip velocity, the stability 
to treat singularity problem and the flexibility to handle 
complex curved boundary.  
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