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Abstract 

The mode change from Taylor cone-jet to dripping in electrospraying has been analytically investigated. 
The change has been predicted by the dynamic behavior of a liquid drop at the tip of the cone-jet. 
Conservation laws are applied to determine the upward motion of the drop, and an instability model of 
electrified jets is used to determine the jet breakup. Finally, for the first time, the analysis enables prediction 
of the transition in terms of the Weber number and electric Bond number. The predictions are in good 
agreement with experimental data. 

기호설명 
D  : jet diameter (m) 
E  : electric field intensity (V/m) 

eF  : electric force acting on the drop (kg m/s2) 

eg  : electric acceleration (m/s2) 

K  : electrical conductivity (S/m) 
k  : wave number 

nl  : necking distance (m) 

M : drop mass (kg) 
Q  : flow rate (m3/s)  
q  : charge (C)  

0R  : jet radius (m) 

cr  : radius of the capillary needle (m) 

S  : cross section area of the jet (m2) 
t  : time (s) 

0V  : jet velocity (m/s) 
v  : drop velocity (m/s) 

0z  : distance between needle and plate (m) 
 
그리스문자 

α  : Taylor cone half-angle 
γ  : surface tension coefficient (kg/s2) 
ε  : dielectric constant 

0ε  : electrical permittivity of vacuum 
η  : nondimensional flow rate 
ρ  : density (kg/m3)  

sσ  : surface charge density (C/m2) 

nτ  : necking time (s) 

0Φ : applied voltage (V) 
ω  : frequency or growth rate (1/s) 
 
하첨자 

c  : critical 
e  : electric 
min : minimum 
n  : normal direction or necking 
s  : surface tension 
z  : axial direction 
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1. 서 론 

Electrospraying refers to electrostatic or 
electrohydrodynamic spraying of liquids. When a liquid 
is pumped through a capillary needle under an electric 
potential on the order of several kV to several tens of kV, 
the liquid meniscus forms a unique cone shape at the 
needle tip. Also, a thin jet emits from the cone apex and 
a spray forms. Taylor (1964) first analyzed the existence 
of the cone shape and validated his theory with 
experiments.(1) Thus, the liquid cone is referred to as the 
Taylor cone. 

However, much is still unknown about the Taylor 
cone-jet. It is not only because the analysis of 
electrohydrodynamic flow is complicated due to 
numerous parameters but also because the measurement 
of key variables is difficult. One major unresolved issue 
is the stability of the Taylor cone-jet. Specifically, it is 
important to predict the transition from the cone-jet 
mode to another mode such as the dripping mode. 
Fernandez de la Mora & Loscertales (1994) investigated 
the transition,(2) and since then it has been known that the 
mode change from cone-jet to dripping occurs when the 
nondimensional flow rate 0γεερη KQ≡ , where ρ , 

K , γ , and ε  are the density, electrical conductivity, 

surface tension coefficient, and dielectric constant of the 
liquid, 0ε  the permittivity in vacuum, and Q  the flow 

rate, has a value of approximately 1. However, the 
critical value over which the Taylor cone-jet ensues has 
been different depending on various parameters and 
many researchers have tried to accurately predict the 
transition.(3-6) Nonetheless, the predictions have been 
difficult probably because the effects of the applied 
voltage and electrode geometry have not been considered. 

Therefore, the objective of this paper is to predict the 
stability of the Taylor cone-jet, or the transition from the 
cone-jet mode to the dripping mode, through an 
analytical investigation. A new stability model of the 
Taylor cone-jet is presented and the transition has been 
predicted by the dynamics of a liquid drop at the tip of 
the cone-jet. Conservation laws and a jet instability 
model are applied to determine the upward drop motion 
and the jet breakup, respectively. The new model’s 
predictions have been compared with experimental 
results. 

2. 본 론 

Consider a Taylor cone-jet before the transition to 
dripping as shown in figure 1(a). The Taylor cone retains 
its shape and a drop is attached to a thin thread emerging 
from the cone. The liquid is assumed to be inviscid. In 
figure 1(b), D  is the diameter of the jet. Here D  is 
assumed to be constant along the axial direction because 
the jet is slender. 0V  is the downward velocity of the jet, 

and the velocity profile across the jet is assumed to be 
uniform due to negligible viscous effects and small D . 

 
2.1 Motion of the drop moving towards the cone 

In figure 1(b), ζ  is the displacement of the drop and 

t  the time. If at 0=t  a drop completely detaches from 
the jet, the remaining part of the jet begins to recede 
upward towards the cone and a new drop is formed at 

0=ζ . The mass of the drop, M , gradually increases 

during the recession: 
)( 0tVSM += ζρ ,   (2.1) 

where S  is the cross-section area of the jet and 
42DS π≡ . If v  is the velocity of the drop, the 

equation of motion of the drop can be written in the form 

eFVvSVDMv
dt
d

−+−= )()( 00ργπ , (2.2) 

where eF  represents the electric force downward. Here 

the surface tension force is calculated with D , not with 
the needle diameter as in Clanet & Lasheras (1999).(7) 
Substituting (2.1) into (2.2) and using dtdv ζ= , the 

equation of motion becomes 

es F
S

V
dt
dVV

dt
dtV

dt
d

ρ
ζζζ 1)()( 00

2
0 −+−=⎥⎦

⎤
⎢⎣
⎡ + , 

(2.3) 
where DVs ργ4≡ . 

To solve (2.3), D  needs to be determined. Thus, the 
so-called asymptotic universal scaling of D  is adopted. 
The scaling, presented by Ganan-Calvo (1997), is 

bfQ
K

D 2/1
6/1

03/22 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −

γ
ρεπ ,  (2.4) 

where bf  is a scaling constant.(8) 
Then, eF  is the only undetermined part in (2.3), and 

is newly predicted. If q  is the net charge of the drop 
and 0E  the axial electric field acting on the drop, 

0qEFe = ,   (2.5) 
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by Coulomb’s law. Charges are assumed to relax and 
accumulate to the liquid surface immediately, and 
therefore the liquid inside is regarded as quasi-neutral. 
And q  is assumed to be as the sum of two parts, one 

from the remaining part of the jet after the breakup and 
the other from the upstream jet. Thus (2.5) becomes 

00 )( EtVDF se σζπ += ,  (2.6) 
where sσ  is the surface charge density of the jet. 

To determine sσ , the normal electric boundary 

condition at the liquid-gas interface is invoked as 

n
i

nns EEE 000 εεεεσ ≈−= ,  (2.7) 

where nE  and i
nE  represent the outer and inner 

electric fields normal to the surface respectively. And the 
normal stress balance at the jet surface gives 

2
02

12
nE

D
εγ

= .   (2.8) 

Hence, from (2.4), (2.7) and (2.8), sσ  is newly 

determined as 
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    (2.9) 
In (2.6), 0E  also needs to be determined, and is newly 

approximated as the axial component of the maximum 
normal electric field of the cone, max,nE , due to the 

small size of the drop (figure 2). Then we get 

α
ε

αγα sincos4sin
2/1
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    (2.10) 
where α  is the Taylor cone half-angle. 

α  is known to depend on variables such as the 
applied voltage and the flow rate (Ganan-Calvo, Pantano 
& Barrero 1996).(9) Therefore, a correlation for α  is 
presented by scaling the axial electric field at the needle 
tip, zE . Jones & Thong (1971) calculated zE  in 

needle-to-plate geometry by applying the image method: 

)/4ln( 0

0
,

cc
imagez rzr

E Φ
≈ ,  (2.11) 

where 0Φ  and cr  are the applied voltage and radius of 
the needle, respectively.(10) Also, zE  is determined from 

the normal stress balance as 
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From (2.11) and (2.12), 
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(2.13) 
where aC  is a scaling constant. Here a key 

nondimensional parameter in electrospraying, the electric 
Bond number EBo , is derived as 
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EBo  represents the ratio of electric force to surface 

tension. Figure 3 shows the correlation between 
αα sincos  and EBo  according to the data obtained 

experimentally by Ganan-Calvo et al. (1996) and aC  

has a value of 1.583. 
The substitution of (2.6) into (2.3) yields an analytic 

solution for ζ : 

tVVtg
s

e )(
6 0

2 −+−=ζ ,  (2.15) 

where “acceleration of electric force” DEg se ρσ 04≡ , 

termed analogous to that of gravity. From (2.15), the 
maximum displacement of the drop, 

e
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2.2 Jet breakup or necking 

Once the drop reaches maxζ , the drop begins to move 

downward and detach from the jet. This jet breakup is 
called necking. Basset (1894) and Taylor (1969) 
analyzed the breakup of electrified jets and presented an 
dispersion relation as 
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    (2.17) 
where k , R , and 0r  are the wave number, the jet 

radius, and the distance between the jet and the earthed 
radial surrounding respectively, and 0I , 1I , 0K , and 

1K  the modified Bessel functions.(11,12) From (2.17), the 
necking time nτ  can be written as 

2/13

8 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

γ
ρτ DCnn

,   (2.18) 

where nC  is a scaling factor known to be 2.91 for non-
electrified jets. Here nC  is written in terms of EBo  as 
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E

E
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CBoC
2

0−
= ,  (2.19) 

where 0C  is constant. 
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If the drop moves downward a distance nl  during the 

jet breakup, then 
nn Vl τ0≈ ,   (2.20) 

where nl  is called the necking distance. 

 
2.3 Transition from cone-jet to dripping 

If maxζ<nl , the necking point moves upward. 

Therefore, at this condition, the cone-jet mode transitions 
to the dripping mode. On the other hand, if maxζ>nl , 

the necking point moves downward so that the jet is 
extended and thus maintained. Consequently, the 
transition condition is maxζ=nl , and from (2.16) and 

(2.20), it becomes 
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Here sVV0  is replaced with the Weber number defined 

as γρ DVWe 2
0≡ . We  is the ratio of inertia to surface 

tension and ( )2
04 sVVWe = . Finally, from (2.9), (2.10), 

(2.13), (2.14), (2.18) and (2.21), the transition condition, 
in terms of We  and EBo , is 
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Also, from (2.4), We  can be replaced with η . Given 
Q , 0V  is written as 
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and therefore, the relationship between We  and η  is 

newly given by 

ηε
3

2

bf
We = . (2.24) 

Thus, the transition condition, in terms of η  and EBo , 

is 
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    (2.25) 
 

2.4 Determination of bf  and 0C  

Tang & Gomez (1994) provide all of the relevant 
information, which includes a stability diagram as shown 
in figure 4.(13) By matching the critical or discontinuous 
point which is found in both the model and the 
experiment, bf  and 0C  are determined. 

η  at the critical point is 

ε
η

32 b
c

f
= ,   (2.26) 

and EBo  at the critical point is 

0, CBo cE = .   (2.27) 

In the experiments of Tang & Gomez (1994), 
688.0=cη  and 25.1, =cEBo . Hence from (2.26) and 

(2.27), 46.1=bf  and 25.10 =C . 

 

3. 결과 및 토의 

Figure 5 shows a comparison of the predicted and 
measured transition conditions. The agreement is 
excellent. Here, if we divide the transition condition into 
two parts based on the critical point, with increasing η , 

EBo  at the transition decreases in the left but increases 

in the right. This “V” shape forms because, in (2.25), the 
term involving η1  dominates the left and the term 

involving η  the right. 

Another set of experimental data is found in Cloupeau 
& Prunet-Foch (1989).(14) Figure 6 shows the measured 
transition condition along with the predictions. Here, to 
find causes of a discrepancy, the values of key 
experimental parameters are examined (Table 1). Among 
many experimental parameters, ε  may be responsible 
for the discrepancy because it is not included in the 
scaling of D , (2.4). In Table 1, the value of ε  is 4.29, 
which is very small compared to 80 of Tang & Gomez’s 
(1994) experiments. Therefore, the scaling of D , (2.4), 
may be adequate for large values of ε , and may need to 
be further refined for small values of ε . 

In figure 4, at a certain point in the cone-jet mode, if 
Q  is decreased at a fixed 0Φ , the mode transition 
occurs. Q  corresponding to this transition is called the 
minimum flow rate minQ , and is clearly dependent on 

0Φ . In our analysis, αα sincos , which can be 

interpreted as the nondimensional axial electric field 
acting on the drop, depends on 0Φ  in (2.13), and the 
mode transition to dripping is predicted in terms of 0Φ  

as shown in figure 5. Nevertheless, another prediction of 
the transition to the multi-jet mode, which corresponds to 
the upper boundary of the cone-jet mode in figure 4, is 
needed to determine the condition for minQ  completely. 
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4. 결 론 

The transition from the Taylor cone-jet mode to the 
dripping mode has been analyzed, and, for the first time, 
the transition has been accurately predicted. Therefore, 
the mechanism behind this transition is concluded to be 
based on the dynamic behaviour of the drop at the tip of 
the cone-jet with the following remarks. The surface 
tension force, jet inertia, and electric force determine the 
transition, and these three forces are represented as two 
nondimensional parameters; the Weber number We  and 
the electric Bond number EBo . The minimum value of 
η  over which the cone-jet mode is maintained is 
determined in terms of EBo , defined as 

000 ))/4ln(( Φ≡ ccE rzrBo γε . A function of the 

Taylor cone half-angle, αα sincos , is regarded as the 

nondimensional axial electric field acting on the drop, 
and is also determined from EBo . 
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Table 1 Values of key experimental parameters along 
with cη  and cEBo ,  of Tang & Gomez’s (1994) and 
Cloupeau & Prunet-Foch’s (1989) experiments 

Parameters 
Tang & 
Gomez 
(1994) 

Cloupeau & 
Prunet- 

Foch (1989)
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Flow rate (m3/s) ~10-10 10-11~10-8 

Applied voltage (kV) 13.4~16.0 3.31~3.88 

Surface tension coeff. (N/m) 7.30 x 10-2 3.50 x 10-2

Electrical conductivity (S/m) 1.02 x 10-4 3.20 x 10-7

Dielectric constant 80 4.29 

Nondimensional flow rate cη 0.688 0.772 

Electric Bond number cEBo , 1.25 0.537 
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Fig. 1 A drop at the tip of the Taylor cone-jet. (a) Three 
external forces acting on the drop; (b) motion of 
the drop moving towards the cone. 
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Fig. 2 Axial electric field acting on the drop. 
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Fig. 3 Correlation between αα sincos  and EBo . 
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Fig. 4 Stability diagram provided by Tang & Gomez 
(1994). 
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Fig. 5 Predicted and measured transition conditions in 
terms of η  and EBo . 
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Fig. 6 Comparison of the predicted and measured 
transition conditions. The experimental data are 
from Cloupeau & Prunet-Foch (1989). 
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