The investigation of Diesel Spray Combustion in DME HCCI

†.

*

Ock Taeck LIM, Norimasa IIDA,

 Key Words :
 Diesel Combustion(
), Dimethyl ether(DME :
), Homogeneous

 Charge Compression Ignition(HCCI;
), Rapid Compression

 Machine.(R.C.M;
)

Abstract

The purpose of the research is to investigate of diesel spray combustion for simultaneously reduce way NOx and PM. The pressure diesel injection were done into intermediates that are generated by very lean DME HCCI combustion using a RCM. The concentration of intermediate could not be directly measured; we estimated it by CHEMKIN calculation. DME HCCI characteristic is surveyed. Validations of the CHEMKIN calculation were confirmed pressure rise of an experiment and pressure rise of a calculation . Using a framing streak camera captured two dimensional spontaneous luminescence images from chemical species at low temperature reaction(LTR) and high temperature reaction (HTR). Also, the combustion events were observed by high-speed direct photography, the ignition and combustion were analyzed by the combustion chamber pressure profiles .

			NOx		,	
	omnoratura Dagatian			, ,	02, Ar	
LIK. LOW IG						가
HTR: High T	emperature Reaction		(4) (0) (0)	()		•
t _{LTR} :	(ms)		(1) (2) (3)	(4)		
t _{HTR} :	(ms)			HCHC), H2O2	
T _{LTR} :	(K)			,		
T _{HTR} :	(K)					
t _{10%} : 10%	(ms)				DME	
t _{50%} : 50%	(ms)				Dill	
t _{90%} : 90%	(ms)					
						,
				. HCHO,	H202	
	1.					DME
		, PM,				
+			A) HCHO,	H202		
I						
E-mail: otlim@ulsan.ac.kr			CHEMKIN	SENKIN		
TEL : (052)	259-2852 FAX : (052)259-1680			OLININ		
*	()					

B) DME

(flaming streak camera)

Fig. 1 Pressure histories, heat release rate, temperature histories and mole fraction of major chemical species at DME = 0.01

Fig. 2 Pressure histories, heat release rate, temperature histories and mole fraction of major chemical species at DME = 0.08

C) HCHO, H2O2

JIS2

Fig. 3 Pressure histories , heat release rate , temperature histories and mole fraction of major at injection time (250ms)

Fig. 4 In-Cylinder Gas Temperature and Mole Concentration of OH , H2O2 , HCHO at injection time (250ms)

2. DME

HCHO, H2O2, OH

P0=0.1MPa , DME =0.01,0.08 1,2 . DME =0.01,0.08 (LTR), 2 HTR) (. DME =0.01 , LTR, HTR LTR t_{LTR} t_{LTR_end} 가 154ms 800K . LTR T_{LTR_end} DME 가 1/3 , HCHO, H2O2 150ms 가 HCHO DME , 가 800K 6.0 × 10-4,2.5 × 10-4 . HTR t_{HTR} 175ms 가 900K T_{HTR} HTR t_{HTR_end} 가 1000K 185ms T_{HTR end} . HCHO, H2O2 HTR . DME =0.08, DME =0.01, LTR t_{LTR} =150ms, T_{LTR} =700K t_{LTR_end} =155ms, , LTR T_{LTR_end} =800K 가 LTR HCHO, H2O2 2.5 × 10-3 , LTR HCHO, H2O2 2.5×10^{-3} , 1.0×10^{-3} . HTR t_{HTR} =170ms =0.01, DME 0.5ms T_{HTR} =950K . 50K . HTR , T_{HTR_end} =1100K t_{HTR_end} =170ms 15ms 100K . CO2 HTR 2 3 4 (250ms) (mol/m3). DME (t=250ms) =0.01 가 가 980K

HCHO= 2.0×10^{-4} mol/m3, H2O2= 8.0×10^{-5} mol/m3

DME	=0.08	,
	가	가 1250K
,	100%	, HCHO,

Table 1 Specification of Rapid Compression Machine

Specification

Items	Value
Bore × Stroke	145 x 692mm
Cylinder volume	12.2 x 10 ⁻³ m ³
Combustion Chamber volume	0.0793 x 10 ⁻⁶ m ³
Compression Ratio	14.6
Combustion Chamber Thickness	48mm
Combustion Chamber type	Pancake type
Compression Duration	200ms
Quartz Maximum Endurable Pressure	5MPa

DME

3.

DME

Fig.6 Pressure, Temperature, pressure rise rate history and 2-dimensional image

Table2 Compare of Experimental with CHEMKIN results at injection time (250ms)

Condition	item	Air	DMEΦ =0.01	0.02	0.04	0.08
E	P(MPa)	2.89	3.09	3.14	3.19	3.13
Experiment	T(K)	906.01	937.93	894.11	906.26	916.46
	P(MPa)	3.22	3.29	3.39	3.62	4.24
	T(K)	954.59	976.25	1004.51	1072.61	1254.45
CHEMKIN	OH(mol/m3)	0	2.91E-06	4.91E-06	2.02E-05	3.48E-04
	H2O2(mol/m3)	0	7.57E-05	1.01E-04	1.35E-04	6.82E-07
	CH2O(mol/m3)	0	2.07E-04	2.04E-04	1.53E-04	1.95E-15

4.

, DME

JIS2

, nozzle 0.20mm . 250ms

.

Fig.9 Injection pressure , cylinder volume , cylinder temperature and cylinder pressure at Air+JIS2 , DME Φ =0.01+JIS2 , DME Φ =0.02+JIS2

0 ms 1.07 ms 1.34 ms 1.62 ms 1.90 ms 2.17 ms 2.45 ms 3.00 ms 3.83 ms 4.93 ms 6.04 ms 7.14 ms 7.97 ms 9.07 ms 9.90 ms

Fig. 10 Direct photograph at Air+JIS2, DME/Air Φ =0.01+JIS2, DME/Air Φ =0.02+JIS2

	23MPa	1 31.65r	ng		. ,	=0.01	=0.04	
4ms		. 2		가	가 30K	5	가,	
			가			. =	0.02 0.	.04
					, Air		=0.04	
НСНО, Н2	Ю2 ОН			가	가	,		0.2ms
	7	ŀ		가				
906.01K, 2.89MP	a, =0.01 9	37.93K, 3.09MI	Pa,	7	' ŀ			
=0.08 916.46	K, 3.13MPa				. 2	4	, Air	
가	가						,	
가			9, 10			가		DME
Air	DME				:	= 0.01		
=0.01,0.02		,				НСНО		
							=0.08	НСНО
Air	1.42 ms, =	0.01	1.11	H20	02			, OH 가
ms, =0.02	1.12 m	5.		3.5 × 10) ⁻⁴ mol/m3			
Air	8.704ms	, =0.01				•	OH 💈	가
9.324ms, =0.02	2 9.4	62ms フト	•					
9 가		가				•	8	
			•		t_{id}	,		가
DME	가				10%, 50%, 90%			

'10% t10', '50% t50, 90% t₉₀ 가 , OH 가 =0.08= 0.01=0.02НСНО, Н2О2, ОН 가 =0.01=0.02가 =0.01= 0.01가 ,

가

5. , , , DME . DME

, DME

1) , DME =0.01LTR t_{LTR} =148ms, T_{LTR} =690K , LTR t_{LTR_end} =154ms, T_{LTR_end} =800K . LTR 가 1/3DME НСНО DME 가 가 HCHO, H2O2 150ms 가 가 800K

. HTR t_{HTR} =175ms, T_{HTR}=900K HCHO, H2O2 HTR . = 0.08 =0.01

, LTR , , LTR , LTR HCHO, H2O2 =0.01 . HTR t_{HTR} =170ms , =0.01 0.5ms , T_{HTR} =950K 50K

2) 가 가

가

가

(1) Norimasa Iida, Mitsunori Nakamura and Hideki Ohashi, 1997, "Study of Diesel Spray Combustion in an Ambient Gas Containing Hydrocarbon Using a Rapid Compression Machine", *SAE Paper* 970899

(2) Jin-Ha Lee and Norimasa Iida, , 2001 "Combustion of Diesel Spray Injected into Reacting Atmosphere of Propane-Air Homogenious Mixture" *International Journal of ENGINE RESEARCH*, IMeckE and SAE, 2001 Vol. 2, No. 1, pp 69-80

(3) Danilo Nikolic, Kazunari Wakimoto, Shinya Takahashi and Norimasa lida, 2001. " Effects of Nozzle Diameter and EGR Ratio on the Flame Temperature and Soot Formation for Various Fuels " SAE Paper 2001-01-1939 (4) Shinya Takahashi, Kazunari Wakimoto, Danilo Nikolic and Norimasa lida, 2001, "Effect of Aromatics Contents and 90% Distillation Temperature of Diesel Fuels on Flame Temperature and Soot Formation", SAE Paper 2001-01-1940, 2001 Vol. 2, No. 1, pp 69-80

(5) H. J. Curran, W. J. Pitz, C.
K. Westbrook, P. Dagaut, J-C Boettner,
M. Cathonnet, 2000, "A Wide Range
Modeling Study of Dimethyl Ether
Oxidation", *International Journal Chemical Kinetics*, 30-3, pp 229-241