금속이 함유된 코륨을 이용한 TROI 증기폭발 실험

김종환[†] · 민병태^{*} · 홍성완^{*} · 홍성호^{*} · 박익규^{*} · 송진호^{*} · 김희동^{*}

The TROI Steam Explosion Experiments Using Metal-added Corium

Jong-Hwan Kim, Beong-Tae Min, Seong-Wan Hong, Seong-Ho Hong, Ik-Kyu Park, Jin-Ho Song and Hee-Dong Kim

Key Words: Steam Explosion(증기폭발), TROI Facility(TROI 실험장치), Corium(코륨), Severe Accident(중대사고), External Trigger(외부기폭)

Abstract

Two steam explosion experiments were performed in the TROI facility by using metal-added molten corium (core material) which is produced during a postulated severe accident in the nuclear reactor. A triggered steam explosion occurred in a case, but no triggered steam explosion did in the other case. The dynamic pressure and the dynamic load measured in the former experiment show a stronger explosion that those performed previously with oxidic corium. A steam explosion is prohibited when the melt temperature is low, because the melt is easily solidified to prevent a liquid-liquid interaction.

1. 서 론

1.1 증기폭발 연구의 배경

원자력 발전소에서 중대사고가 발생하여 원자로 노심이 녹아 내리면 냉각수와 용용물이 반응하여 급격히 증기가 발생되고 이로 인해 파괴적인 압력 파를 동반하는 증기폭발이 일어날 수 있다. 증기 폭발이 발생하면 원자로 압력용기가 손상되거나 격납건물이 파손되어 방사성 물질이 격납건물 외 부로 유출되고 나아가 대중의 안전이 위협받을 수 도 있다. 이러한 증기폭발 현상은 노심이 용용되 었던 미국의 TMI 원전 사고 이후 중대사고 연구 에서 중요한 쟁점이 되어왔고, 이에 대한 많은 연 구들이 수행되었다[1-6].

[「] 한국원자력연구원 E-mail:kimjh@kaeri.re.kr TEL:(042)868-2649 FAX:(042)863-3689

* 한국원자력연구원

1.2 TROI 증기폭발 실험의 필요성 및 범위 지금까지 증기폭발 연구에서 많은 성과가 있었 지만, 아직까지 원자로 노심의 용융 혼합물인 코 륨이 증기폭발을 일으키는지 등에 대한 쟁점이 남 아 있다[7]. 지금까지 ANL 의 ZREX 실험[2]이나 JRC-Ispra 의 FARO/KROTOS 실험[3-6]에서는 각각 zirconia 나 코륨의 자발적인 폭발이 일어나지 않는 다고 알려져 왔다. 그러나 원자력 연구소에서 수 행한 TROI 실험에서는 zirconia 나 코륨에서 용융 물의 성분비에 따라 자발적인 그리고 외부기폭에 의한 증기폭발의 발생이 발견되었다[8,9].

실제 노심 용융물은 핵연료(UO₂), 피복재(Zr), 산화 피복재(ZrO₂)와 구조재(스틸)로 구성되어 있 으므로 용융시 우라늄 금속이 화학반응에 의하여 석출된다[10]. 이 금속은 물과 반응하여 수소를 생 성시켜 증기폭발성을 증가시킨다. 그러므로, 노심 원물질의 폭발성을 알기 위해서는 금속이 함유된 코륨을 사용한 증기폭발 실험 연구를 수행하여야 한다.

본 논문에서는 원자로 노심 원물질과 가까운 금 속이 함유된 코륨 용융물을 사용한 TROI 실험 (TROI-51 & 52)에 대하여 기술한다.

2. TROI 실험 장치

TROI 실험장치(TROI-51)는 그림 1 에 나타나 있 다. 실험장치는 용융로, 용융로 보호용기, 격리 밸 브, 압력용기와 반응용기 등으로 구성되어 있으며 자세한 내용은 참고문헌[11]에 기술되어 있다. 압 력용기에는 온도 센서, 동압계, 정압계, 가스 포집 장치 및 고속 카메라가 설치되어 있고, 반응용기 에는 온도 센서, 동압계 및 동하중 센서가 설치되 어 있다. 용융물의 온도 측정은 용융로 보호용기 상단에 설치된 가시창을 통하여 2 색 적외선 온도 계로 측정하였다. TROI-51 실험에 대한 자세한 측 정변수와 사양은 표 1 에 나타나 있다. 그리고 외 부기폭장치로서는 화약(PETN, 1g)을 사용하였다.

Parameter	Sensing location	Sensor description
Melt temperature	Melt delivery path	IRCON pyrometer model
*	• •	3R-35C15-0-0-1 (1500 ~ 3500°C)
Coolant temperature	IVT101 ~ IVT106	0.5mm, Thermocouple
Dynamic pressure in the coolant	IVDP101 ~ IVDP106	KISTLER 6005 <100MPa
Under-water dynamic pressure	UWDP101,UWDP102	PCB model W138A26 <160MPa
Dynamic load at the test section bottom	IVDL101	KISTLER 9081A <650kN
Ambient temperature in the pressure vessel	PVT001 ~ PVT005	1.0mm, Thermocouple
Static pressure in the furnace vessel	FVSP001	Rosemount model 1511 <2.0MPa
Static pressure in the pressure vessel	PVSP004, PVSP005	Druck model PMP4060 <3.5MPa
Dynamic pressure in the pressure vessel	PVDP004, PVDP005	KISTLER 6061B <25MPa
Melt velocity	IVT201 ~ IVT209	0.5mm, Thermocouple
Void Fraction	VFDP101 ~ VFDP103	Honeywell DP ST3000 STD924
Gas Sampling for Hydrogen detection	GAS005	Gas sampling bottle

Table 1 Measurement parameters and their descriptions in TROI-51

Fig. 1 Schematic diagram of TROI-51

2 색 적외선 온도계(IRCON, 1500~3500°C)는 TROI-51 실험에서는 용융물이 낙하하는 경로의 온도를 측정하기 위해 하부에 설치하였고, TROI-52 실험에서는 용융중의 용융물의 온도를 측정하 기 위해 상부에 설치하였다. 용융물의 온도는 회 색체 조건으로 가정하여 측정할 수 있었다.

그러나 용용물의 온도 측정은 TROI-51 실험에 서 설치한 강화 유리 가시창의 영향을 받았다. 그 래서 유리창의 효과를 보정하기 위하여 한국표준 연구원에서 교정시험을 수행하였다. 이 시험 결과 는 참고문헌에 잘 기술되어 있다[12]. 이 시험에서 강화유리를 통과한 온도는 실제온도보다도 높게 나타났는데, 이는 강화 유리의 투과율이 적외선 온도계의 파장에 유관하므로, 온도측정을 왜곡시 켰기 때문이다. 교정시험은 1500 ~ 2700°C 에서 이 루어 졌으며, 그 교정식은 다음과 같다.

$$+ 0.8083 \cdot T_{m}$$
 (1)

여기에서, T_c는 교정온도, T_m 은 측정온도이며, 단위는 절대온도(K)이다.

그러나 가시창을 석영 유리로 교체하였을 경우

 $T_c = 376.4$

에는 방사율의 비를 0.996 으로 하였을 때, 표준온 도와 측정온도가 일치하였다. 그리하여 TROI-52 실험에서는 가시창을 석영유리로 교체하여 실험을 수행하였고, 온도보정이 불필요하였다.

3. TROI 실험 결과

3.1 개요

금속이 함유된 코륨이 증기폭발에 어떠한 영향 을 미치는지를 연구하기 위하여 TROI-51 과 52 의 두 증기폭발 실험이 수행되었다. 용융물이 낙하하 여 냉각수가 차있는 반응용기의 바닥에 도달할 때, 외부기폭을 수행하였다.

TROI-51 과 52 실험의 초기조건과 간략한 결과 가 표 2 에 나타나 있다. 반응용기에는 대기압, 상 온의 물이 수심 1.3m, 직경 0.6m 로 채워져 있었 다. 외부기폭은 TROI-51 실험에서는 1.35 초에, 그 리고 TROI-52 에서는 1.67 초에 이루어 졌으나, 기 폭장치와 DAS(Data Acquisition System)의 오차로 인해 약간의 차이가 발생하였다. 이때, 시간 0 은 도가니 속의 용융물을 배출하기 위해 천공장치가 용융물의 밑바닥을 천공한 시점이다.

3.2 TROI-51 실험

이 실험은 금속이 함유된 코륨을 사용하여 증기 폭발을 기폭시키려 수행한 실험이다. 금속 함유 코륨은 용융시에 우라늄을 포함한 금속층을 석출 하기에, 석출된 금속층이 증기폭발의 강도에 미치 는 영향을 알아보려 하였다.

UO₂, ZrO₂, Zr 과 스테인레스 스틸을 각각 62.8, 13.5, 12.5 과 11.1%의 비율로 도가니에 충전하여 용융하였다. 이 무게비는 OECD/MASCA 실험[10] 의 비율을 참조하여 결정된 값이다.

도가니 속에서 용융된 코륨은 냉각수가 채워져 있는 반응용기 속으로 낙하되었다. 용융물의 낙하 중에 용융물의 온도를 적외선 온도계로 측정하였 으며, 이는 그림 2 에 나타나 있다. 최고 용융물의 온도는 3420K 로 측정되었으며, 강화유리의 효과 를 보정한 후의 온도는 3141K 이었다.

용융물 제트가 반응용기 내의 물속을 지나 반응 용기의 바닥에 도달하는 시점인 용융물 낙하 후 1.35 초에 외부기폭 장치가 작동하였다.

그림 3 은 반응용기 벽면에 장착된 동압계를 사 용하여 측정한 물속에서의 동압을 보여 준다. 두 개의 압력파가 1.327 초와 1.329 초에 측정되었다. 첫 번째 압력파는 바닥(IVDP101)으로부터 상부 (IVDP104)로의 압력파의 전파를 보여 준다. 이 압 력파는 바닥에 설치된 외부기폭장치로부터 발생한 것이다. 두 번째 압력파도 상부로부터 바닥으로의 압력파의 전파를 보여 준다. 이것은 용융물 제트 의 선단이 바닥에 도달하지 못하고 상부에 있을 때 증기폭발이 외부기폭에 의해 유도된 것이라 생 각된다. 유도된 증기폭발에 의한 압력파의 크기는 32 MPa 로서, 금속이 함유되지 않고 산화물만으로 이루어진 코륨(UO₂ 와 ZrO₂)에서 발생한 증기폭발 의 크기(~20 MPa)보다 큰 값이다.

Table 2	Test c	conditions	and	results

	TROI test number	Unit	51	52
Melt	Melt Charge Composition UO2 / ZrO2 /Zr/SS		62.8/13.5/	61.0/16.0/
			12.6/11.1	12.2/10.8
	Measured temperature	[K]	3420	2650
	Corrected temperature	[K]	3141	2650
	Charged mass	[kg]	13.705	14.105
	Released mass	[kg]	6.309	8.604
	Initial jet diameter	[cm]	6.5	6.5
	Free fall in gas	[m]	3.2	3.2
Test	Water mass	[kg]	367	367
Section	Section Initial height		1.3	1.3
	Final height	[m]	1.02	1.23
	Cross section	$[m^2]$	0.283	0.283
	Initial temp.	[K]	294	285
	Sub-cooling		79	88
Press.	Initial pressure	[MPa]	0.115	0.116
Vessel	Initial temp.	[K]	297	289
	Free volume	[m ³]	8.023	8.023
Results	sults Maximum PV		0.053	0.070
	pressurization			
	Time to reach peak	[s]	3.2	3.0
	PV heat-up	[K]	53	276
	Time to stabilize	[s]	6	10
	Water heat-up	[K]	5	10
	Time to stabilize	[s]	11	18
	Steam explosion Triggering (ET) time		Yes	No
			1.35	1.67
	after melt delivery			
	Dynamic pressure Duration		32 (SE)	11 (ET)
			1.1 (SE)	1.2 (ET)
	Impulse	[kN]	580 (SE)	275 (ET)
	Duration	[ms]	11 (SE)	9 (ET)
Debris	Total	[kg]	6.309	8.604
	> 6.35 mm	[kg]	0.595	0.510
	4.75 ~ 6.35 mm	[kg]	0.400	1.005
	2.0 ~ 4.75 mm	[kg]	1.355	3.645
1.0 ~ 2.0 mm 0.71 ~ 1.0 mm		[kg]	1.075	1.835
		[kg]	0.450	0.515
	0.425 ~ 0,71 mm	[kg]	0.700	0.555
	< 0.425 mm	[k]	1 734	0 539

그림 4 는 물속에 매달려 있는 동압계로 측정한 동압을 보여 준다. 이는 벽면에 장착된 동압계의 결과와 비슷한 형태를 보여 주는데, 그 크기는 훨 씬 작다. 그 이유는 이 동압계가 고정되지 않아 폭발에 의해 움직였기 때문이라 생각된다. 압력파 의 폭은 약 1.1ms 로 벽면에 장착된 동압계와 비 슷하게 나타났다.

Fig. 2 Melt temperature during delivery in TROI-51

Fig. 3 Dynamic pressures from wall-mounted sensors in TROI-51

Fig. 4 Dynamic pressures from under-water sensors in TROI-51.

그림 5 는 반응용기 하부로의 동하중을 보여 준

다. 최대 동하중은 580 kN 으로 측정되었으며, 폭 은 11ms 이었다. 외부기폭의 시점은 1.327 초임을 보여 준다. 동하중의 크기는 금속이 함유되지 않 은 코륨을 사용한 실험에서의 크기(~300 kN)보다 도 더 컸으며, 이로부터 강력한 증기폭발이 발생 하였음을 알 수 있다.

Fig. 5 Dynamic load in TROI-51

그림 6 은 증기폭발 후에 수거된 파편층의 크기 분포를 보여 준다. 이 그림에서는 0.425mm 보다 작은 파편층의 무게비가 27.5%이었다. 이 수치는 증기폭발이 일어나지 않은 경우(~10%)보다 훨씬 크며, 또한 파편층의 질량평균직경(mass mean diameter)도 1.2mm 로 증기폭발이 일어나지 않은 경우(~2mm)보다도 작았다. 미세하게 분쇄된 파편 층이 급격한 증기의 발생을 초래하였고, 이로 인 해 강력한 증기폭발이 유도되었다.

Fig. 6 Debris size distribution in TROI-51

3.3 TROI-52 실험

이 실험은 TROI-51 실험의 반복 실험으로 수행 되었다. 혼합 충전물인 UO₂, ZrO₂, Zr 과 스테인레

3482

스 스틸의 무게비는 약간 변화하여 각각 61.0, 16.0, 12.2 와 10.8%이었다.

혼합 충전물의 용융중에 측정한 온도가 그림 7 에 나타나 있다. 이 실험에서는 가시창으로 석영 유리를 사용하였으므로 적외선 온도계를 이용하여 측정한 온도는 보정할 필요가 없이 용융물의 온도 로 사용하였다. 용융물의 온도는 최대 2650K 로 측정되었는데, 이는 TROI-51 실험에 비해 약 500K 정도 낮은 값이다. 이 용융물은 용융 시작 후 5860 초 경에 냉각수가 채워져 있는 반응용기 로 낙하하였다.

Fig. 7 Melt temperature during melting in TROI-52

그림 8 과 9 는 반응용기 벽면에 설치된 동압계 와 물속에 매달린 동압계로 측정한 압력파이다. 이 그림에서 오직 하나의 압력파만이 1.715 초에 관측되었음을 보여 준다. 이 압력파는 하부에서 상부로의 압력 전파만을 보여주고 있으므로, 하부 에 위치한 외부기폭장치에 의한 폭발이란 것을 알 수 있다. 그러므로 증기폭발은 유도되지 않았다고 추론할 수 있다. 증기폭발이 발생하지 않은 이유 로는 용용물의 온도와 과열도가 너무 낮아서, 용 융물이 냉각수를 지날 때 쉽게 고화되어, 증기폭 발에 필수 조건인 액체와 액체간의 반응이 이루어 지지 않았기 때문이라 생각된다.

그림 10 은 반응용기 하부로의 동하중을 보여준 다. 이 실험에서의 동하중은 TROI-51 실험에서의 크기보다 훨씬 낮아 증기폭발이 유도되지 않았음 을 암시한다.

실험 후, 파편층을 모아 크기를 분류하여 그 결 과를 그림 11 에 나타내었다. 파편의 직경이 0.425mm 보다 작은 미세 입자의 무게비가 6.3%로 TROI-51 의 결과보다도 훨씬 작았다. 또한 파편층 의 질량평균직경은 2.6mm 로 TROI-51 의 경우보다 도 훨씬 컸다. 이는 용용물의 미세파편화가 적게 일어났다는 것을 말해주며, 그리하여 급속한 증기 발생이 억제되어 증기폭발이 일어나지 않았다는 것을 설명해 준다.

Fig. 8 Dynamic pressures from wall-mounted sensors in TROI-52

Fig. 9 Dynamic pressures from under-water sensors in TROI-52

Fig. 10 Dynamic load in TROI-52

Fig. 11 Debris size distribution in TROI-52

4. 결론

금속이 함유된 코륨을 사용하여 두 실험을 수행 하였다. 용용물의 온도가 충분히 높은 경우의 실 험에서는 외부기폭에 의한 증기폭발이 유도되었으 나, 용용물의 온도가 낮을 경우에는 증기폭발이 발생하지 않았다. 용용물의 온도가 높을 때는, 증 기폭발에 필수적인 용용물의 미세파편화가 이루어 졌으나, 낮을 때는 용용물의 이른 고화로 미세파 편이 적게 발생하였다. 금속이 함유된 코륨의 경 우 증기폭발이 발생하였을 때 그 강도가 산화물만 으로 구성된 코륨에서 발생한 증기폭발보다도 그 강도가 컸다. 증기폭발의 강도가 용용물의 종류에 영향을 받으므로, 원자로 설계시 물질 효과를 감 안하는 것이 필요하다. 향후에 금속을 함유한 코 륨을 사용한 증기폭발 실험을 좀 더 수행하여, 이 물질의 폭발성을 확인하여야 할 것이다.

후 기

본 연구는 과학기술부 원자력 중장기 과제에서 재정적인 지원을 받았습니다.

참고문헌

- D. E. Mitchell, M. L. Corradini and W. W. Tarbell, 1981, "Intermediate scale steam explosion phenomena: Experiments and analysis," SAND81-0124, SNL.
- (2) D. H. Cho, D. R. Armstrong and W. H. Gunther, 1998, "Experiments on interactions between Zirconium-containing melt and water," NUREG/CR-5372.

- (3) D. Magallon, I. Huhtiniemi, and H. Hohmann, 1999, "Lessons learnt from FARO/TERMOS corium melt quenching experiments," *Nuclear Engineering and Design*, Vol.189, pp.223~238.
- (4) I. Huhtiniemi, D. Magallon and H. Hohmann, 1999, "Results of Recent KROTOS FCI Tests: Alumina versus Corium Melts," *Nuclear Engineering and Design*, **189**, pp.379~389.
- (5) D. Magallon and I. Huhtiniemi, 2001, "Corium melt quenching tests at low pressure and subcooled water in FARO," *Nuclear Engineering and Design*, Vol.204, pp.369~376.
- (6) I. Huhtiniemi and D. Magallon, 2001, "Insight into steam explosions with corium melts in KROTOS," *Nuclear Engineering and Design*, Vol.204, pp.391~400.
- (7) J. H. Song, I. K. Park, Y. J. Chang, Y. S. Shin, J. H. Kim, B. T. Min, S. W. Hong and H. D. Kim, 2002, "Experiments on the interactions of molten ZrO₂ with water using TROI facility," *Nuclear Engineering and Design*, Vol.213, pp.97~110.
- (8) J. H. Kim, I. K. Park, B. T. Min, S. W. Hong, Y. S. Shin, J. H. Song and H. D. Kim, 2004, "The Influence of Variations in the Water Depth and Melt Composition on a Spontaneous Steam Explosion in the TROI Experiments," *Proceedings of International Congress on Advanced Nuclear Power Plant* (*ICAPP'04*), Pittsburgh, PA USA, June 13-17.
- (9) J. H. Kim, I. K. Park, B. T. Min, S. W. Hong, J. H. Song and H. D. Kim, 2004, "An Effect of Corium Composition Variations on Occurrence of a Spontaneous Steam Explosion in the TROI Experiments," *Proceedings of NUTHOS-6*, Nara, Japan, October 4~8.
- (10) V. Asmolov and V. Strizhov, 2004, "Overview of the Progress in the OECD MASCA Project," CSARP Meeting, Washington DC, USA.
- (11) J. H. Kim, I. K. Park, B. T. Min, S. W. Hong, H. Y. Kim, J. H. Song and H. D. Kim, 2005, "Triggered Steam Explosion Experiments in the TROI Facility," *Proceedings of International Congress on Advanced Nuclear Power Plant (ICAPP'05)*, Seoul, Korea, May 15~19.
- (12) J. H. Kim, I. K. Park, S. W. Hong, B. T. Min, S. H. Hong, J. H. Song and H. D. Kim, 2006, "Steam Explosion Experiments Using Nuclear Reactor Materials in the TROI Facility," *Proceedings of NTHAS5*, Jeju, Korea, November 26~29.