.

Neuronal protective role of ginsenoside Rg3 against homocysteine-induced degeneration of brain hippocampus in rat; Therapeutic strategies for neuronal diseases

Jong-Hoon Kim^a, Chang-Won Kang^a, Il Jeoung Yu^a, Jungkee Kwon^a, Myung Jo You^a, Jun-Ho Lee^b, Sang Min Jeong^b, In-Soo Yoon^b, Byung-Hwan Lee^b, Joon-Hee Lee^b, Mi Kyung Pyo^b, Sang-Mok Lee^b, Jun-Mo Chung^c, Sunoh Kim^d, Hyewhon Rhim^d, Jae-Wook Oh^e, Soo Yeun Cho^b, Seung-Yeol Nah^b,^{*}

^aDepartment of College of Veterinary Medicine, Chonbuk National University, Jeonju, Korea 561-756 ^bGinsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Institute of Biomedical Science and Technology, Konkuk University, Seoul, Korea 143-701 ^cDepartment of Life Sciences and CCSR, Ewha Women's University, Seoul, Korea 120-750 ^dBiomedical Research Center, KIST, Seoul, Korea 136-701 ^eDepartment of Anatomy, College of Medicine, Chosun University, Gwangju, Korea 501-759

We previously demonstrated that ginsenoside Rg(3) (Rg(3)), one of the active ingredients in Panax ginseng, attenuates NMDA receptor-mediated currents and NMDA-induced neurotoxicity. Ginsenoside Rg(3) antagonizes NMDA receptors through a glycine modulatory site in rat cultured hippocampal neurons. Accumulating evidence suggests that homocysteine (HC), a metabolite of methionine, exerts its excitotoxicity through NMDA receptor activation. In the present study, we examined the neuroprotective effects of Rg(3)on HC-induced hippocampal excitotoxicity in vitro and in vivo. Our in vitro studies using rat cultured hippocampal neurons revealed that Rg(3) treatment significantly and dose-dependently inhibited HC-induced hippocampal cell death, with an EC(50) value of 28.7+/-7.5 muM. Rg(3) treatment not only significantly reduced HC-induced DNA damage, but also dose-dependently attenuated HC-induced caspase-3 activity in vitro. Our in vivo studies revealed that intracerebroventricular (i.c.v.) pre-administration of Rg(3) significantly and dose-dependently reduced i.c.v. HC-induced hippocampal damage in rats. To examine the mechanisms underlying the in vitro and in vivo neuroprotective effects of Rg(3) against HC-induced hippocampal excitotoxicity, we examined the effect of Rg(3) on HC-induced intracellular Ca(2+) elevations in cultured hippocampal cells and found that Rg(3) treatment dose-dependently inhibited HC-induced intracellular Ca(2+)elevation, with an IC(50) value of 41.5+/-17.5 muM. In addition, Rg(3) treatment dose-dependently inhibited HC-induced currents in Xenopus oocvtes expressing the NMDA receptor, with an IC(50) of 47.3+/-14.2muM. These results collectively indicate that Rg(3)-induced neuroprotection against HC in rat hippocampus might be achieved via inhibition of HC-mediated NMDA receptor activation.