CNT Emitter Coated with Titanium Oxide Nanoparticles for FED Application

Jong-Ung Kim¹, Byong-Hwan Ryu¹, Heesung Moon², Jaemyeong Kim², Cho Hang No³, Park Seoung Uk³ and Youngmin Choi¹ ¹Device Nano Materials Center, KRICT, P.O. BOX 107, 100 Jangodng, yuseonggu, Daejeon 305-600, Korea

 TEL:82-42-860-7362, e-mail: youngmin@krict.re.kr.
 ²Electron Materials Development Team, SAMSUNG SDI Co., Ltd, P.O Box 428-5, Gongseri, Giheungeup, Yonginsi, Gyeonggido 449-577, Korea
 ³R&D Lab, IMD Co., Ltd, P.O Box 131-3, Nueupdong, Osansi, Gyeonggido

447-156, Korea

Keywords : Field emission, CNT, TiO₂ nanoparticles

Abstract

Carbon nanotubes (CNTs) have used as an electron field emitter of the field emission display (FED) due to their characteristics of high-electron emission, rapid response and low power consumption. However, to commercialize the FED with CNT emitter, some fundamental problems regarding life time and emission efficiency have to be solved. In this study, we investigated the TiO₂ coated CNT as a field emitter. TiO₂ nanoparticles can coated on CNT surface by chemical solution method. TiO₂ nanoparticles had uniform size with the average size of about 2.4 nm to 3.1 nm. Field emission performance of CNT coated with TiO₂ nanoparticles was evaluated and discussed.

1. Introduction

Recently, there are many efforts to develop the field emission display (FED) using the carbon nanotube (CNT) as an emitter. The properties of CNT, such as a high aspect ratio, sharp tip, excellent chemical and mechanical properties, are favorable for field emitter [1-5]. However, there are still problems to be solved in order to make a practical CNT-FED. One of the key issues is to improve the emitter performance, especially the life time. Nanoparticle coating on CNT results in increasing the emission site, concentrating of electric field at nanoparticle, decreasing the work function of CNT, increasing the electrical conductivity and decreasing the turn on voltage and consequently improving the life time.

2. Experimental

TiO₂ nanoparticles were coated on CNT surface by chemical solution method. Heterogeneous nucleation of TiO₂ nanoparticles occurs on CNT surface. Then TiO₂ nuclei grow to form nanoparticles which coated on CNT surface. Particles size distribution could be controlled by optimizing the synthetic parameter, such as solid content, concentration of solution, rinsing and heat treatments condition. The properties of CNT coated with TiO₂ nanoparticles were characterized by TEM, EDS, XRD, XPS and TGA&DTA analysis. Field emitting performance of CNT coated with TiO₂ nanoparticles were tested.

3. Results and discussion

Titanium salts produced nuclei of titanium oxide on CNT surface by heterogeneous nucleation. After nucleation the growth of TiO_2 particle leading to CNT surface coating with nanoparticles. The size of TiO_2 nanoparticle has the range between 2 and 4 nm (average size of 2.68 nm) and size distribution shows narrow. The TEM image and size distribution are presented in Fig. 1. XRD pattern of the TiO_2 nanoparticle coated on CNT was shown in Fig. 2. Peaks were matched with the anatase phase TiO_2 (JCPD #21-1272) but the crystallinity was slightly low. Coating quantity of TiO_2 on CNT was about 46 wt% determined by TG-DTA analysis. Weight loss at

around 400 $^{\circ}$ C due to the decomposition of CNT.

Fig. 1. TEM image (a) and size distribution (b) of TiO_2 coated CNT.

Fig. 2. XRD pattern of TiO₂ coated on CNT.

In order to improve the crystallinity of amorphous TiO_2 nanoparticles, they were heat treated at 700,

1000, and 1300 $^{\circ}$ C for 2 h in hydrogen atmosphere. After the heat treatment, The size of TiO₂ nanoparticle was increased from 6.9 nm to 28.4 nm. This was due to grain growth by heat treatment. XRD pattern of the TiO₂ nanoparticle coated CNT after heat treatment was shown in Fig. 3. TiO₂ at 700 and 1000 $^{\circ}$ C shows a mixed crystal phase of the anatase (JCPD #21-1272) and rutile (JCPD #83-2242) phases. TiO₂ at 1300 $^{\circ}$ C shows the phase transition to pure rutile phase. As a result, Heat treatment at high temperature in hydrogen atmosphere improved the crystallinity of TiO₂.

Fig. 3. XRD patterns of CNT coated with TiO₂ nanoparticle heat treatment in H₂ atmosphere.

Field emission characteristics of the TiO₂ nanoparticle coated CNT. Raw CNT shows the turnon voltage of 3 V/ μ mand current density of 53.1 μ A/cm² at 6 V/ μ m. CNT coated with TiO₂ nanoparticle shows the decrease of turn-on voltage to 1.6 – 1.7 V/ μ m and increase current density to 120.7 – 133.7 μ A/cm² at 6 V/ μ m. However, there is no difference between different temperatures of heat treatment in field emission performance.

4. Summary

 TiO_2 nanoparticles could be coated on CNT surface by chemical solution method. The size of nanoparticles ranged between 2 and 4 nm and size distribution showed narrow. Amorphous nanoparticle could be transferred to crystalline phase through heat treatment in hydrogen atmosphere. TiO_2 nanoparticle coating on CNT surface could improve the field emission performance. Turn-on voltage was decreased and current density was increased comparing to raw CNT, which expected to improve the life time of CNT emitter in FED application.

5. Acknowledgements

This work was supported by the Ministry of Commerce, Industry, and Energy Korea through a Components and Materials Technology Development project (No. 0401-DD2-0162).

6. References

- 1. Y. Saito, K. hamaguchi, T.Nishino, K. Uuchida, Y. Nishina, *Nature* **389**, 918 (1997).
- Q.H. Wang, A. A. Setlur, J. M. Lauerhaas, J. Y. Dai,
 E. E. Seelig, R. P. H. Chang, *Appl. Phys. Lett*, **72**, 2912 (1998).
- 3. S. Yahach, U. sashiro, Carbon, 38, 169(2000).
- 4. H. Mirakami, M. Hirakawa, C. tanaka,
 H. Yamakaea, *Appl. Phys. Lett.* 76, 1776 (2000).
- 5. L. X. Dong, F. Arai, T. Fukyda, *Appl. Phys. Lett*, **81**, 1919 (2002).