Parameter Optimization and Uncertainty Analysis of the Rainfall-Runoff Model Coupled with Hierarchical Bayesian Inference Scheme

Hierarchical Bayesian 기법을 통한 강우-유출모형 매개변수의 최적화 및 불확실성 분석

  • Published : 2007.05.17

Abstract

정교한 강우-유출 모의를 위해서는 적절한 매개변수의 추정이 필수적이며, 매개변수 추정 방법은 시행착오(trial and error)에 의한 수동보정법과 최적화방법을 사용한 자동보정법으로 구분할 수 있다. 모형의 매개변수의 수가 많은 경우 수동보정법에 의한 매개변수 추정은 매우 어렵다. 자동 보정법에 사용되는 최적화방법은 Rosenbrock 알고리즘, patten search, 컴플렉스(complex) 방법, Powell 방법 등과 같은 지역최적화 방법과 전역최적화 방법으로 나눌 수 있다. 그러나 기존 방법론들은 매개변수의 최적화를 추적하기 위한 알고리즘이 대부분이며 이들 매개변수에 관련된 불확실성을 평가하는데는 미흡한 단접이 있다. 이러한 점에서 본 연구에서는 강우-유출모형의 매개변수 추정에 있어서 불확실성을 평가할 수 있는 새로운 방법론을 검토하고자 한다. 매개변수와 관련된 불확실성을 평가하기 위한 방법은 여러 가지가 있으나 통계적으로 매우 우수한 능력을 보이는 Hierarchical Bayesian 알고리즘을 Probability-Distributed 강우-유출 모형에 적용하였다. 본 방법론은 최적화와 동시에 각 매개변수에 관련된 사후분포(posterior distribution)의 추정이 가능하므로 모형이 갖는 불확실성을 효과적으로 평가할 수 있다. 따라서, 수자원 관리에 있어서 불확실성을 고려할 수 있으므로 보다 수리수문학적 위험도를 저감할 수 있을 것으로 판단된다.