LaAlO₃-BaZrO₃계 perovskites의 제조 및 유전특성 <u>이소희</u>*, 김 신*, 신현호* 강룡대학교* Fabrication and dielectric properties of LaAlO₃-BaZrO₃ perovskites Sohee Lee*, Shin Kim*, and Hyunho Shin* Kangnung National Univ*. Abstract The perovskites in the LaAlO₃-BaZrO₃ system (i.e., (1-x)LaAlO₃-xBaZrO₃) were fabricated by a solid state reaction and their dielectric properties were investigated. For the compositions of x=0.1~0.9, the mixture of LaAlO₃ with a rhombohedral structure and BaZrO₃ with a cubic was observed when the sintering was conducted at 1500°C, indicating that the solubility of constituent elements was very low and a narrow solid solution region might exist. The large difference of ionic radii between La³⁺ ion (0.136nm, C.N.=12) and Ba²⁺ ion (0.161nm) or Al³⁺ ion (0.0535nm, C.N.=6) and Zr⁴⁺ ion (0.072nm) might hinder the mutual substitution. Within the compositions of x=0~0.7, the dielectric constant of the mixture increased with the amount of BaZrO₃, i.e., x value, which was in good agreement with the logarithmic mixing rule (ln $_{r,i}$ = Σv_i ln $_{r,i}$). The increase in BaZrO₃ doping decreased $Q \times f$ value significantly due to the low $Q \times f$ value of BaZrO₃ itself, a poor microstructure of the mixture with an increased grain boundary area per volume, and defects in the cation and oxygen sublattices which were respectively caused by the evaporation of barium during the sintering process and the substitution of Ba Key Words: LaAlO₃-BaZrO₃ system, perovskites, dielectric properties, rhombohedral structure, on La-site or Al on Zr-site.