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Abstract

This paper presents a multi-robot localization based on
Bayesian Multidimensional Scaling (BMDS). We propose a
robust MDS to handle both the incomplete and noisy data,
which is applied to solve the multi-robot localization
problem. To deal with the incomplete data, we use the
Nystrom approximation which approximates the full
distance matrix. To deal with the uncertainty, we formulate
a Bayesian framework for MDS which finds the posterior of
coordinates of objects by means of statistical inference. We
not only verify the performance of MDS-based multi-robot
localization by computer simulations, but also implement a
real world localization of multi-robot team. Using extensive
empirical results, we show that the accuracy of the
proposed method is almost similar to that of Monte Carlo
Localization(MCL).
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Introduction

In recent years, there has been increased activity in the
area of collaborative approaches to multi-robot localization.
A simple approach for cooperative localization system with
no infrastructure was first proposed in [1]. A dominant
modern approach is the probabilistic Monte Carlo
Localization (MCL) [2] utilizing an independence property
to estimate the position of the individual robots. A study [3]
on the influence of different group trajectories on the
accuracy of MCL showed that through appropriate
cooperation, localization error decreases while the number
of robots increases. Other approaches taking advantage of
relative inter-robot range and bearing observations also
have been proposed [4, 5, 6]. A maximum likelihood
estimation-based approach is given in [7], and an Extended
Kalman Filter [8] using relative observations of range and
bearing is described.

In general, most of robot localization methods, which have
been proposed in recent, have concentrated on a question
that 1s ~"Where am [?" in an environment with

b

known/unknown map, however, we regarded multi-robot
localization problem as a task of finding relative positions
of each robot in multi-robot team. So we consider neither
global localization nor map building in this paper.

We performed extensive simulations to verify which
choice is good. Our experiments show that the prediction
strategy is the best choice for initialization. The rest of this
paper is organized as follows. Next section describes a
MDS framework which 1s the key of our proposed method.
Then, a multi-robot localization based on the proposed
MDS framework will be described. The results of
experiments also must be drawing. Finally, we make the
conclusion and the future works of our contribution.

Multidimensional Scaling

Although MDS has its origins in psychometrics and was
origmally proposed to help understand people's judgments
of the similarity of members of a set of objects, it has found
several applications in diverse fields as marketing,
sociology, physics, political science, biology, and
engineering. MDS is a generic term that includes many
different specific types. These can be classified according
to whether the data are qualitative or quantitative, the
number of similarity matrices, the nature of the MDS model,
and the implementation of the algorithm to solve the MDS
problem.

Classical metric MDS
The task of classical MDS is to find the coordinates of p
dimensional points X (r =1,...,n) from a Euclidean
distance matrix. The Euclidean distance between X  and
X  1s defined as
2 _ T
d; =(x;—X,) (X, —X,). (1)
Let the of X is B , where
[B), =b, = X?X ;- Then the Euclidean distance d; can

inner product

be represented by B as
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d; = XX, +X,X,~2X;X, o
= b, +bjj—2b,.
By centering the coordinator matrix X to origin
b
that(zizlbij = (0) and summing Eq. (2) over i, over j,

and over I and j, we find that

Y= She,
%/_,Zi; =b. +—-—Z 3)
ZZ ——-ZZ

=l j=l i=t j=l

By combmmg Eq. (2) and (3), we find that

1

b, = -—(d*-d’-d>+d’
i 2 i I J ' ) (4)
= (a;—a,—a,+a),
|

‘where a; = —f2—d§ .

We can rewrite B=HAH by double centering for the

matrix of [a,.}.] = A , where the centering matrix

H=I-N""11". Since the matrix B is symmetric,
positive semi definete, and
rank(B) = rank(X"X) = rank(X)=p , it can be
decomposed as

B=TAI", (5)

where A =diag(4,,--,

B , which
I'=(y,,--,¥,) . Hence, it can be represent the

A,) is the diagonal matrix of

corresponds to the eigen vector

coordinators of X € R? space as

X =TA". (6)

Dealing with incomplete data

Classical MDS finds the exact coordinates from the
distance matnx when its rank 1s full, but 1t 1s difficult to
obtain all distance information among the points. We
propose an efficient MDS using an approximation method
(called Nystrém approximation), which has been applied to
Gram kemel matnx or Euclidean distance matrix
completion problem. The Nystrom approximation can build
a kermel matrix K by using the sub matrix from the
distance matrix D . Here, we have two matrices K and

D that can be partitioned into four sub matrices as

|4 B E F
D= B and K = oGl (7)

where A and E have the size of mxm, B and
F have the size of mx(N—-m), and C and G

have the size of (N —m)x (N —m), respectively. The
Nystrém approximation permits the computation of the
coordinates X, using only the information in matrices £

and F . Assuming K is positive semi-definite, it should
be represented by the dot products of columns of the

matrices X and Y as
X'X X'Y
- rer " (8)
YX YY
Identifying the sub matrices in Eq. (8) with those in thoes in
Eq. (7) yields
E = X'X,
F = XY,
where E isidentical to B of the classical MDS . Thus,

the eigen decomposition of E is E=TAI'", and then
obtain the coordinators by Eq.(6). The coordinates

corresponding to F  can be derived by solving the linear
system as

Y=XTF=TTA"?F. (10)

The equality of the approximation is proportional to
|G~F"E"'F||. Matrices E and F must be derived

only from the sub-matrices A and B ( in the distance

matrix D). The centering formulas provide £ and F
as

U—«(A, ﬂe—ZA2 —ZA, 4—ZA2} (11)
.1
Fy = _E[Bz; “%;ZBU- I, ;ZA;)’ | (12)

where e 1s the vector of all ones.

9

Dealing with uncertainty
We must consider the uncertainty of observations, which
is inevitable from the observed distance obtaind from the
noisy sensors. To over come this problem, we utilize the
idea of the statistical inference for MDS. We assume the

possible distributions for the noisy observation O are

~ N(d,

20 2) , Where dij is the true distance,

normal, :;;

and 0° is the variance of the distribution. Usually, the
true distance is unknown, but the variance of the
distribution can be identified by empirical or by referring to
the specification of sensors. We can denote the matrix form
of the problem as
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d121 dIZN — 511 51N ]
d. o.
D — 2 i ) , A — il ,
le dNN 5N1 5NN
- ) T - ~ (13)
o 0
. 2
Z — O-ii ,
0 Oy

By using the Bayesian formulation of the relations
between A and D, we know that

P(D|A)P(A)
po1a)

We compute the maximum a posterior(MAP) of

P(D|A) as

P(A|D)=

(14)

InP(D| A)———;vln[(br)z 2] —%(D —AY (D -A).

(15)

In this work, we use a simple "Metropolis Hasting'
algorithm in [14] to obtain the solution of the Eq. (15).
Then, the estimated distance matrix can be obtained by

arg maxinP(D | A). (16)
D

MDS-Based Localization

This section illustrates a detailed explanation of the
proposed localization technique. Table I summarizes
MDS-based localization algorithm. We assumed each robot
1s equipped with a range sensor such as a laser finder, sonar,
or camera to identify distance to other robots. We also
assume that each robot is equipped with a set of inertial
sensors (e.g. a compass and odometer) to compute its own
motion.

Table I. MDS-based localization algorithm.

Eigen decomposition : E =TAI".
Solve Eq. (6) with I" and A.
X=[x,x2,..

.»X, | :the current coordinates.

At each optimization step, the algorithm can be
initialized. We implement three strategies for this:

« Random -- If we have no prior about the environment
and the dynamics of each robot, coordinates obtained at
random are set as initial point. |

X®()-N(u,0°)
e Previous -- When the movement of each robot 1s
comparably small or the iteration time step is short, it may

be desirable to set initial locations to the previous
coordinates.

X9 =X@t-1)
« Prediction -- The system is initialized with the

predicted value of the current pose by applying a motion
model to the previous pose.

Xt =X(1t-D)+pX(®)

Experiments and Results
We performed several experiments to validate the
proposed multi-robot localization. Starting in a basic

environment, there are 6 robots marked RO to RS5. We

assumed that all inter-robot distances are available and
motion dynamics can be obtained via odometry on each

robot which has Gaussian noise( 0 =0.2 ) as the
measurement error. Robots are made to move randomly for
1200 time steps. As noted in Section , we applied three
strategies for initialization at each optimization step. Fig. 1
shows the plot of convergence for each policy. The figure
tell us that initializing with the prediction procedure,
which is generated by adding the previous coordinates to
the motion information, 1S more than 3 times faster than
random initialization. The previous procedure was more
than 2 times faster than the random case.

Table II. Relative location error and convergence speed

Initialization ;

Given a noisy distance matrix [D for N points.

Generate the distance matrix [) by observations using
Eq. ((16)).

Permutate the m items (m < N) to be the first
rows and columns of these matrices.

Random Previous Prediction
Number  of 40.92 18.20 12.46
iterations
o 5.15 3.75 2.87
Relative 0.0156 0.0143 0.0134
errors
o 0.0023 0.0026 0.0029

Nystrom approximation:

To check the accuracy of the proposed distance mapping
with the three initialization strategies, we evaluated the
mean of the relative errors between the real position and the

Compute £ and F from D by Eq. ((11)) and Eq.
((12)). Approximate the full matrix K with

K.

Get the coordinates :

computed position in 2D coordinate space. The error is
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the accuracy of both localization methods are almost same.
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some problems. When it is required to reconstruct the T 5 4 5 3

absolute position, the random initialization needs more than

two or three robots to have known positions. The number of i X |
robots might not affect the performance of absolute Fig. 6 The trajectory of the ground truth (represented as

localization. The plot of the average error to compare dots *.’) and the embedding by the proposed method

MCL-based with MDS-based multi-robot localization is (represented as symbols).

shown 1n Fig. 4 as well. As a result of the comparison, the
average error of MCL-based localization is 0.41 and that of
MDS-based localization is 0.39. Thus, we can assure that

To better reflect a real situation, we performed
experiments on the Player/Stage simulator[15] with 9
robots. We configured a world with complex corndors
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causing occlusions at most time step. Fig. 5 shows the
simulated environment. Each robot has a laser finder which
can observe other objects within 5 meters range in an 180
degree angle, a odometry device to calculate its motion, and
a fiducial bar-code to be identified by other robots.

Discussion and Conclusion

We do not focus on the global localization and map
building, but on the relative multi-robot localization. We
make two contributions. First, we propose the use of Multi
Dimensional Scaling (MDS) for multi-robot localization.
Second, by using the Nystrdm approximation and the
Bayesian formulation, we propose the robust MDS on
incomplete and noisy data. We take advantage of the
motion information of robots to help the optimization
procedure. In addition we verify the performance of both
MCL-based and MDS-based multi-robot localization are
almost same. We should extend the proposed MDS to solve
simultaneous localization and mapping (SLAM) problem.
Now, our current work does not worry about the orientation
of robots and motion model. For solving the data
association procedure in the SLAM problem, we need to
include the motion model into the proposed MDS

framework and devise an estimation method of the current
robot's pose.
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