Multiple Classifier System for Activity Recognition
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Abstract

Nowadays, activity recognition becomes a hot topic in
context-aware computing. In activity recognition, machine
learning techniques have been widely applied to learn the
activity models from labeled activity samples. Most of the
existing work uses only one learning method for activity
learning and is focused on how to effectively utilize the
labeled samples by refining the learning method. However,
not much attention has been paid to the use of multiple
classifiers for boosting the learning performance. In this
paper, we use two methods to generate multiple classifiers.
In the first method, the basic learning algorithms for each
classifier are the same, while the training data is different
(ASTD). In the second method, the basic learning
algorithms for each classifier are different, while the
training data is the same (ADTS). Experimental results
indicate that ADTS can effectively improve activity
recognition performance, while ASTD cannot achieve any
improvement of the performance. We believe that the
classifiers in ADTS are more diverse than those in ASTD.
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1. Introduction

Activity recognition has gained a lot of interest in recent
years due to its potential and usefulness in context-aware
computing such as aged care monitoring [1] and smart
homes [2]. Basically, the purpose of activity recognition is
to infer people’s behaviors from low-level data acquired
through sensors in a given setting, with which other critical
decisions are made. For instance, in smart home
environments for aged care monitoring [2], the system
needs to automatically monitor the occupants and determine
the time to raise the alarm when the occupants need
assistance. The determination is based on the information
provided by cameras and other pervasive sensors.

There are several ways to acquire human’ activities using
sensor systems. These methods include, but not limited: (1)
remotely observe the scene wusing audio, visual,
electromagnetic field, or other sensors and interpret the
signal readings [3][4][5], (2) attach sensors to the body and
interpret the signal readings [6][7][&], (3) attach sensors to
objects and devices in the environment and interpret the
sensor readings [9][10].

For different activity recognition systems, they may use
various approaches mentioned above to acquire activity
information. However, machine learning is always a key
aspect 1n these systems. To automatically infer what
activity 1s being performed, a system must have a detailed
model of the activity. Currently a variety of machine
learning methods have been proposed for activity
recognition, such as neural networks [11], dynamic
Bayesian networks [12], naive Bayesian networks [13],
hierarchical hidden semi-Markov models [14], nearest
neighbors [8], decision tree [8] and so on.

However, most of the methods proposed above are used
individually for activity recognition, and to achieve good
recognition performance, a lot of work should be done to
optimize the individual classifier. This optimization is
usually complex and data-dependent. In this paper, we
intend to use multiple classifiers for activity recognition. It
has been proved in [15] that multiple classifiers can
significantly improve the generalization ability of single
learner.

The main advantage of our work is to avoid the complex
optimization process in simple classifier by using multiple
classifiers. We will briefly explain the basic multiple
classifiers and the concept of diversity, which is the most
important concept in multiple classifier systems (MCS) in
Section 2. In addition, our multiple classifier construction
has proved that multiple classifiers can have better
performance than individual classifier. In our experiment
we use two methods to generate multiple classifiers to keep
diversity. In the first method ASTD, the basic learning
algorithms for each learner are the same, while the training
data for them is different. In the second method ADTS, the
basic learning algorithms for ecach learner are different,
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while the training data is the same. The results of our
expertment are shown in Section 3 and discussed in Section
4. Finally, we conclude our work in Section 5.

2. Multiple Classifier System

MCS 1is usually built in two steps. The first step is to
generate multiple component classifiers and the second step
1s to combine their predictions. According to the way to
generate component classifiers, current MCSs fall into two
categories, i.e., algorithms that generate component
classifiers in parallel [16] and algorithms that generate
component classifiers in sequence [17]. In this work, we
focus on the MCS in parallel because they usually require
less training time compared with sequential MCSs. This is
very important since in many activity recognition systems,
training is required for each individual person.

2.1 Diversity in Multiple Classifier System

Each component classifier in MCS will be trained firstly.
Then their output will be combined to predict the label of
new examples. It is intuitively clear that an ensemble of
identical classifiers will be no better than a single member
thereof. If we have “the perfect classifier”, then no

ensemble is needed. If the ensemble members are imperfect,

they should be different so that at least some of them are
correct where the others are wrong.

Much work has shown that the diversity between each
component classifier plays an important role in MCS. If the
diversity is not enough, ensemble might not improve the
generalization ability.

Let C = A(T) denote the i, component classifier. It is
trained based on algorithm A, and tramning data7 . Let
C; = A,(T,) denote the ju component classifier. To achieve
C,#C,,A(T)# A/(T,), at least two methods can be used.

1) 4 =4,and T, #T, . We term this method ASTD
(algorithms are the same, training data are different)

2) A, #4,and T,=T,. We term this method ADTS
(algorithms are different, training data are the same).

The details of ASTD and ADTS are given in Section 2.2
and 2.3 respectively.

2.2 ASTD

The framework of ASTD is illustrated in Fig. 1. In this
example, decision tree is the basic classification method,
though conceptually any classification method (e.g. Naive
Bayes) can be substituted used. Each decision tree in Fig. 1
is trained using the training instances for that decision tree.
As mention in Section 2.1, when the algorithms are same
for each component classifier, the training data must be
different in order to generate diversities between them.

For that point, the method we use is bootstrap [18]. Each
classifier’s training set is generated by randomly drawing,

with replacement, N examples — where N is the size of the
original training set; many of the original examples may be
repeated in the resulting training set while others may be

left out. Each individual classifier in the ensemble is

generated with a different random sampling of the training
set.

Combination Dacision Tree Outputs

Figure 1 - Framework of ASTD

Figure 2 gives a sample of how bootstrap might work on an
imaginary set of data. Since bootstrap resamples the
training set with replacement, some instances are
represented multiple times while others are left out. So
bootstrap’s training-set-1 might contain examples 3 and 7
twice, but contains neither example 4 nor 5. As a result, the
classifier trained on training-set-1 might obtain a higher
test-set error than the classifier using all the data. In fact, all
of these four component classifiers can result in higher
test-set error; however, when combined, these four
classifiers can (and often do) produce test-set error lower
than that of the single classifier (the diversity among these
classifiers generally compensates for the increase in error
rate of any individual classifier).

A sample of a single classifier on an lmagmary set of data
| - Original training data |
_Training-set-1: 1,2,3,4.5,6, ’7 8

A sample of Bootstrap on the same data iy ':':;; L
 Resampled training data Lo
Trmnmg-set-l 2,7.8,3,7, 6$ 3,1
- Training-set-2: 7, 8, 5, 6, 4 2, 7.1
Trammg—set—S 3, 6,2, ’7 5, 6, 2,2 |
| |  Training-set-4:4, 5,1, 4,6.4.3.8 o
[ —————
Figure 2 - Example of training sets for each component
classifier

2.3 ADTS

The framework of ADTS is illustrated in Fig. 3. In Fig. 3,
the algorithms for each component classifier are different
while training data sets are the same. In fact, to make each
classifier different, the training sets are not necessarily to be
same. In ADTS, we use the original training set for all the
classifiers because original training set is usually better than
the processed one such as bootstrap.

Compared with ASTD, ADTS is easier to implement since
it is not required to generate different training sets. After
each component classifier is trained, their combination will
be used to predict the new unseen instances.
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Figure 3 - Framework of ADTS
3. Experimental Result

For our experiments we use a dataset published in [19]. It
consists of 10 basic activities, namely Lying, Kneeling,
Sitting, Standing, Walking, Running, Climbing Stairs,
Descending Stairs, Bicycling and Jumping. The activities
were recorded by 40 accelerometers strapped loosely to
common trousers, 20 sensors per leg, starting from the
ankle to the hip.

The original data set includes 25177 data samples and 9
activities (1 activity is missing in the dataset). For each
activity, we choose the first 500 samples. Hence totally
4500 data samples are used in our experiment.

For the activity data sets, 70 percent are kept as test
examples while the rest are used as the pool of training

examples, i.e., LuU (labeled examples and unlabeled
examples). It is noted that only L is used for training. In

each pool, Land U are partitioned under different label
rates including 10 percent, 20 percent, 30 percent and 40
percent. For instance, assuming a pool contains 1000
examples, when the label rate is 20 percent, 200 examples

are put into L with their labels while the remaining 800

examples are put into U without their labels.

J4.8 decision trees, Naive Bayes classifier and K-nearest
neighbors (K=3) are used in the experiments. Under each
label rate, ten independent runs with different random

partitions of Land U are performed.

Experiment includes two parts. In the first part, different
classifiers with same training data are used. In each run, the
best performance among the three classifiers are shown in
bold and be compared with their ensemble. In the second
part, same classifiers with bagging are used. In each run,
the ensemble is compared with the single classifier.

3.1 ADTS

We simulate three kinds of classifiers mentioned above.
Figure 4 shows result for decision tree for various label
rates. As shown in this figure, when label ratio 1s 10 percent,
the best individual classifier’s error rate is 17.4% while
their ensemble’s error rate is 17.0%. Totally 1.57%
improvement 1s achieved. As shown in the Table 1, this
average improvement 1s reported by averaging the ten run’s
improvement. At each run, the improvement is calculated
by using ensemble to compare the best classifier. The
relationship between label ratio and amount of
improvement is given in the following figure. As shown in

this figure, improvement is achieved under all the
experimental label ratios. In addition, with the label ratio
increasing, more improvement is achieved. Especially in
the case when label ratio 1s 10%, there i1s only 1.57%
improvement achieved. One possible reason 1s that when
label ratio is small, there is not enough diversity between
each component classifiers even though different learning
algorithms are used.

Table 1 — an example experiment result
(Error rates when label ratio is 30 percent)

Runs | DT | KNN NB Ensem. Imp.
1 0.176 0.157 0.168 0.136 13.4%
2 0.153 0.139 0.136 0.122 10.3%
3 0.183 0.156 0.165 0.139 10.9%
4 0.158 0.148 0.152 0.119 19.6%
5 0.156 0.157 0.163 0.129 17.3%
6 0.148 0.152 0.148 0.115 22.3%
7 0.160 0.146 0.137 0.135 1.46%
8 0.160 0.156 0.150 0.121 19.3%
9 0.185 0.145 0.142 0.116 18.3%
10 0.157 0.138 0.152 0.114 17.4%

Ave. 0.164 0.149 0.151 0.125 15.0%
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Figure 4 - ADTS result for Decision Tree for various label
rates

3.2 ASTD
In this part, each component classifier utilizes the same
base algorithm but different training data by bootstrap.

As shown in Figure 5.a, 5.b, 5S.c, all ensembles of three
classifiers works worse than individual classifier under all
the four label ratios. Based on Figure 5, we also found that
with the label ratio increasing, ensemble classifier works
worse than individual classifiers. When the label ratio is
40%, the improvements are -49%, -20.20%, -51.50% for
decision tree, naive bayes and three k-nearest neighbors
respectively.
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c. ASTD result for KNN for various label rates
s

Figure 5 - ASTD result for three individual classifiers for
various label rates

4. Discussions

The experimental results in Section 3 show that ADTS
achieves good improvement; while ASTD fails to make any
1mprovement compared with individual classifier.

As table 1, in each run, different individual classifier has
the best performance. This result means the performance of
the individual classifier depends on the training data set.
However ensemble classifier has almost consistent
performance in the all runs. In addition the performance of
ensemble is always higher than all of the individual ones.
Most of the research work shows that the success of a
classifier ensemble is that the basic classifiers perform
diversely. Hence, the explanation for our result is that
ADTS generates more diversity between each component
classifier compared with ASTD. For ADTS, the diversity 1s
determined by the difference between each base learning
algorithm. For ASTD, the diversity is determined by the
difference between each training set. Moreover, it is
determined by the base learning algorithms. For example,
some work has shown that ASTD does work well for stable
base learning algorithms such as naive bayes and k-nearest
neighbors.

For the data, if most samples are similar enough,
resampling cannot achieve enough diversity. In addition,
this resampling may remove some important samples.

5. Conclusion and Future works

Activity recognition plays an important role in
context-aware computing. Currently many machine
learning algorithms have been proposed for activity

‘recognition. However, most of them are required to be well

optimized and devised as they are used individually.

To overcome the complex optimization for individual
algorithm, we propose to combine multiple simple
algorithms. Qur point is although these algorithms are
simple, their combination might create good result.

To generate diversity between individual classifiers, two
ensemble methods are used: ASTD (algorithms are same,
training data are different) and ADTS (algorlthms are
different, training data are same).

A set of experimental results show that ASTD works better
than ADTS when using our activity data. This is because
the diversity of ASTD is more than ADTS.
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In the future, we will build our activity recognition system
and further testify our method based on it.

Acknowledgments

This research was supported by the MIC (Ministry of
Information and Communication), Korea, under the ITRC
(Information Technology Research Center) support
program supervised by the IITA (Institute of Information
Technology Advancement) (IITA-2006-C1090-0602-0002).

References

1] V. Stanford, “Using pervasive computing to deliver
elder care”, IEEE Pervasive Computing, 2002, pp.
10-13.

2] C.D. Kidd, R. Orr, G.D. Abowd, C.G. Atkeson and I.A.
Essa, “The aware home: A living laboratory for
ubiquitous computing research”, Proceedings of the
Second International Workshop on Cooperative

Buildings, 1999, pp. 191-198.

[3] S.S. Intille, J. Davis, and A. Bobick, “Real-time
closed-world tracking”, Proceedings of I[IEEE
Conference on Computer Vision and Pattern
Recognition, 1997, pp. 697-703.

[4] S. Stillman, R. Tanawongsuwan, and 1. Essa, “A
system for tracking and recognizing multiple people
with multiple cameras”, Proceedings of the Second
International Conference on  Audio-Vision-based
Person Authentication, 1999.

[5] 1. Haritaoglu, D. Harwood, and L. Davis, “W4: Who,
When, Where, What: A real time system for detecting
and tracking people”, Proceedings of the Third
International Conference on Automatic Face and
Gesture, Nara, 1998, pp. 222-227.

[6] M. Makikawa and H. [izumi, “Development of an
ambulatory physical activity monitoring device and its

application for categorization of actions in daily life.
MEDINFQ, 1995, pp. 747-750.

[7] K. Aminian, P. Robert, E. Jequier, and Y. Schutz,
“Estimation of speed and incline of walking using

neural network”, IEEE Transactions on Instrumentation
and Measurement, 1995, pp. 743-746.

[8] L. Bao, “Physical activity recognition from acceleration
data under seminaturalistic conditions”, M.Eng thesis,
EECS, Massachusetts Institute of Technology, 2003.

[9] G.D. Abowd, “Director of the AwareHome initiative”,
Georgia Insitute of Technology, November 2002.

[10] T. Barger, M. Alwan, S. Kell, B. Turner, S. Wood,
and A. Naidu, “Objective remote assessment of
activities of daily living: Analysis of meal preparation
patterns”, Poster presentation, Medical Automation

Research Center, University of Virginia Health System,
2002.

[11] M. Mozer, “The neural network house: an
environment that adapts to its inhabitants”, Proceedings

of the AAAI Spring Symposium on Intelligent
Environments, Technical Report SS-98-02, AAAI Press,
Menlo Park, CA, 1998, pp. 110-114.

[12] K. P. Murphy, “Dynamic Bayesian Networks:
Representation, Inference and Learning”, PhD thesis,
University of California, Berkeley, 2002.

[13] S.S. Intille and A.F. Bobick, “Recognizing planned,
multi-person action”, Computer Vision and Image
Understanding, 2001, pp. 414-445.

[14] H. Kautz, O. Etziono, D. Fox, and D. Weld,
“Foundations of assisted cognition systems”, technical
report cse-02-ac-01, University of Washington,
- Department of Computer Science and Engineering,
2003.

[15] T. G. Dietterich, “Ensemble learning,” in The
Handbook of Brain Theory and Neural Networks, 2™
edition, M. A. Arbib, Ed., Cambridge, MA: MIT Press,
2002.

[16] L. Breiman, “Bagging predictors,” Machine Learning,
vol.24, no.2, pp.123-140, 1996.

[17] Y. Freund and R. E. Schapire, “A decision-theoretic
generalization of online learing and an application to
boosting,” in Proceedings of the 2" European

Conference on Computational Learning Theory,
Barcelona, Spain, 1995, pp. 23-37.

[18] Efron, B., & Tibshirani, R. (1993). An Introduction to
the Bootstrap. Chapman and Hall, New York.

[19] K. Van Laerhoven and H.-W. Gellersen , “Spine
versus Porcupine: a Study in Distributed Wearable
Activity Recognition”, Proceedings of the eighth
International Symposium on Wearable Computers,
2004, 142-149.

-443 -



