P55

Maximal Oxygen Uptake during Treadmill Running and Elliptical Crosstraining

Byung-Kon Yoon

Yonsei University

Purpose: The purpose of this study was to compare maximal oxygen uptake (VO₂max) values between the treadmill and elliptical crosstrainer. **Method**: Twenty recreationally active individuals (10 men and 10 women, mean age, height, weight, and body composition = 29.5 ± 7.1 yr, 173.3 ± 12.6 cm, 72.3 ± 7.9 kg, and 17.3 ± 5.0 %) completed two randomized VO_{2max} tests: treadmill and Precor elliptical crosstrainer separated by 1–3 days. Breath-by-breath data were collected using a fast response turbine flow transducer (K.L. Engineering Model S–430, Van Nuys, CA) and custom developed software with AEI oxygen and carbon dioxide electronic gas analyzers (AEI Technologies, Model S–3A and Model CD–3H, Pittsburgh, PA). All breath-by-breath data were smoothed using a 7-breath moving average and then time-averaged into 60 s sampling intervals. Criteria for attainment of VO₂max included two of the following: respiratory exchange ratio (RER) > 1.1, maximal heart rate (HR) within 15 b/min of the calculated value, or VO₂ plateau (DVO₂ < 50 mL/min with an increase in power output). Paired *t*-tests were performed to determine mean differences between VO₂max, maximal HR, maximal RER, and protocol duration. **Results**: No significant differences (p > 0.05) were found in VO₂max (47.9 vs47.3 ml/kg/min), maximal HR (186 vs 184 b/min), maximal RER (1.22 vs 1.25), and protocol duration (11.56 vs 12.17 min) between treadmill running and elliptical crosstraining. **Conclusion**: This study revealed that the elliptical crosstrainer produced similar maximal physiological values compared to treadmill running during VO₂max testing.

Key Words: Maximal oxygen consumption (VO2max), maximal heart rate (MHR), exercise mode

P56

Isolation of the Antifouling Compound Heptadecatrienoic Acid from the Coralline Alga *Lithophyllum Yessoense* Foslie

Quoc-Hai Luyen, Jae-Suk Choi, Ji-Young Cho¹, Nam-Hee Park, Ji-Young Kang and Yong-Ki Hong

Department of Biotechnology, Pukyong National University, Namku, Busan 608-737, Korea ¹Department of Marine Biotechnology, Soonchunhyang University, Asan 336-745, Korea

The crustose coralline alga *Lithophyllum yessoense*Foslie is known as a main causing seaweed of algal-whitening phenomenon in marine environment. It produces a kind of allelopathic compound against fleshy seaweed. To use the allelopathic compound as an environmentally friendly antifouling agent, we have isolated the compound from the *L. yessoense* using monospores of *Porphyra yezoensis* as a test organism. The main active compound was isolated by MeOH-H₂O (4:1) extraction, fractionating by polarity, silica gel column chromatography, Sephadex LH-20 gel filtration chromatography, and reverse-phase HPLC to give a single pure compound of 55AC8. The structure was identified by 1D and 2D of ¹H and ¹³C NMR spectroscopy and GC-MS data. Thestructure was proposed as (5E, 8E, 11E)-heptadeca-5,8,11-trienoic acid (odd-carbon fatty acid, C17:3). Biological activities such as LC_{50} of 4.5 μ g ml⁻¹ and IC₅₀ of 2.1 μ g ml⁻¹ have been obtained. Response of monospore growth by the compound was showed a rate-limiting inhibition.

Key words: Antifouling, natural products, Lithophyllum yessoense, odd-carbon fatty acid, Porphyra yezoensis