P121

Screening of Regulatory Gene for OmpW Expression in Salmonella typhimurium

Hea Ryun Kim, Ah Young Yoo, Jong Earn Yu and Ho Young Kang

Division of Biological Science, Pusan National University, Buasn 609-735, Korea

Salmonella, facultative anaerobic Gram negative bacteria, are able to infect humans and animals. In considering Salmonella's success at being a pathogen, it is essential that an ability to synthesize adhesions that would enable Salmonella to adhere to tissue upon oral entry into inside of the host. In a preliminary study, S. typhimurium grown under iron-replete condition adheres better to the host cell than grown in iron-deficient conditions, indicating the existing of iron-regulated adhesions. We detected and identified an outer membrane protein expressed under iron-replete condition. The results of N-terminal sequences and MALDI-TOF analysis of the protein exhibited that the protein is an <u>outer membrane protein W</u>(OmpW) of Salmonella. It was reported that OmpW is a receptor for colicin S4 and forms 8-stranded β -barrel with a long and narrow hydrophobic channel in E. coli. The exact function is unknown. In addition to iron-regulated expression of the protein our recent data suggested that OmpW expression is regulated by various forms of environmental stress salts concentration. Using a Salmonella strains carrying OmpW::lacZYA fusion, experiments to identify regulator protein for OmpW expression are ongoing with the employment of transposon mediated randon mutagenesis.

Key words: S. typhimurium, OmpW, regulator protein

P122

Differential Expression of Genes by Resveratrol Treatment in Human Colorectal HCT116 Cells

Min-Hee Park, Seong-Min Son, Min-Jeong Kim, Bo-Ram Lee and Jong-Sik Kim

Department of Biological Sciences, Andong National University, Andong, Gyeongbuk, Korea

To investigate whether phytochemical resveratrol could affect cancer cell viabilities, human colorectal HCT116 cells were treated with resveratrol in a dose-dependent manner. Resveratrol decreased cancer cell viabilities detected by MTS assay and the cytotoxic effects showed dose-dependent manner. To unveil the molecular mechanism of cell death in response to resveratrol treatment, we carried out oligo DNA microarray analysis. We found that 47 genes were up-regulated more than 3-folds, whereas 116 genes were down-regulated more than 3-folds by 24 hr treatment of 50 µM resveratrol. Among the up-regulated genes, we selected 4 genes (*NAG-1, p21, MT2A, AREG*) and performed RT-PCR and real-time PCR to confirm microarray data. The results of RT-PCR and real-time PCR were highly associated with those of microarray experiment. And also, we detected changes of NAG-1 expression by treatment of several different phytochemicals with real-time PCR. The results indicate that all phytochemicals treated can induce NAG-1 expression. This result implies that NAG-1 may be a key molecule in anti-cancer activity by phytochemicals in human colorectal cancer.

Key words: resveratrol, oligo DNA microarray, gene expression, NAG-1, colorectal cancer