20078 & UHSHEKE8 S

StAEEsE

CH3l H30 H1S

o

A= o)
257

o A

A4 Q4 &

}~
Ae) 14 254

ok

1gdF TAE
A4 Wg 74

*23F, 73F

REE s P

e~mail

A AAAAEF A7] L A FTEH AT
. yunsungrack @kaist.ac.kr, cdyoo@ee.kaist.ac.kr

Automatic Floating-Point to Fixed-Point Conversion for
Speech Recognition in Embedded Device

*Sungrack Yun, Chang D. Yoo
Department of Electrical Engineering
Korea Advanced Institute of Science and Technology

Abstract

This paper proposes an automatic conversion

method from floating-point value computations

to fixed-point value computations for
implementing automatic speech recognition
(ASR) algorithms in embedded device.

L A&
Fixed-point digital signal processors are

required for the minimization of cost and
power consumption and the maximization of
working speed in implementing a signal
processing algorithm. Most signal processing
algorithms are developed with floating-point
data types, but they should be converted into
the fixed-point architectures to satisfy the
cost, power consumption and working speed
of embedded The

automatic speech recognition (ASR} algorithm

constraints systems.

305

is also specified with floating-point data types.
The proposed method uses integer variables
automatically convert the

to floating—point

value computations into fixed-point value

computations for speech recognition algorithms.

In speech recognition algorithm, the likelihood
of an utterance is used Which is defined as

ZW%H ‘lz 19 ‘Ie)

where ¢, is the state at time ¢, =w, is the

1

initial probability of state ¢ and a, ¢, is the
transition prebability from state ¢,_, and g,

b, (z,) is the state output probability of the

feature vector z; and 7 is the number of

The feature
vector is exftracted from an utterance by some

frames of the {feature vector.

such as mel

(MFCC)

feature extraction methods

frequency cepstral coefficient and

20078 (WM XIS

[«]]]

tHSES=0E] RI30H H1S

linear prediction coefficient (LPC).

The feature extraction methods are specified
with floating-point data types. To convert the
floating-point data types into fixed-point data
types, we propose the following
named by INTEX.

structure

INTEX f/precision

Thus, an floating-point value is assigned into
the integer variable f by multiplying a proper
For 12.67893
multiplied by a precision value 1000 and then
assigned into f with the value 12678.

In equation (1), the multiplication of transition

precision value. example, is

probability and state output probability are
These
multiplications cause I{(z,) to be very low

performed for 7 frames. iterative

value since a probability is less than 1 and
larger than 0. If i(z,) becomes too small, an
underflow may occur. Thus, INTEX cannot be
used in this case and another data structure
for computing very low floating~point values
without an underflow is required.

We propose a floating point data structure
with extended range (FLOATEX) to compute
very low floating-point wvalues by using the

following format.

2exponent

FLOATEX 1.fractionx

The fraction and exponent are 32-bit integer. Thus,

it can present a value with order of 10~ ¢408¢+¥
With this precision, any underflow which occurs in

speech recognition algorithm can be prevented.

m +4d
The data structures are implemented in C++.
The operations with the
floating-point data addition,

multiplication and division are automatically

associated

such as

converted into fixed-point operations by using

306

the operator overloading capability of C++.
Thus, they does not need any other manual
conversions which are time-consuming tasks

and tend to produce an error.
V. 248 ¥ &% A7 ¥
The performances were evaluated on an embedded

100,000 additions,

multiplications and divisions. In table 1 and 2, the

devices by computing random

results are shown. The INTEX data structure is

suitable for the floating point value with 1073
precision and it is faster than the FLOATEX. The
FLOATEX is slower than the INTEX but it
supports the floating point value with 107 6-468c+8
precision. Computing floating point values in
embedded device with both data structures were

faster than the double data type.

Time (sec.)
addition(subtraction) 45
double multiplication 4.48
division 8.52
addition(subtraction) 0.27
INTEX rmultiplication 0.28
division 0.47

Table 1. Performances of double and INTEX

Time (sec.)
addition(subtraction) 45
double multiplication 4.48
division 3.52
addition(subtraction) 0.46
FLOATEX multiplication 0.35
division 0.71

Table 2. Performances of double and FLOATEX

Y

1Ed

[1] D. Menard and D. Chillet “Automatic Floating
point to Fixed point Conversion for DSP Code
Generation,” CASES 2002.

