II -43

활성분획 추적방법을 통한 혈관확장 촉진물질의 순수분리 및 구조 동정

부산대학교 : 이유진¹, 신우정¹, 김치대², 배순식², 윤식², <u>최영환</u>^{*1} 동아대학교 : 배외식³

Structural Elucidation of Vasodilation Compound from Schisandra chinensis by Activity-Guided Fractionation

¹School of Natural Resources and Life Sc.ience, ²School of Medicine, Pusan National University and ³College of Medicine, Dong-A University

You-Jin Lee¹, Woo-Jeong Shin¹, Chi-Dae Kim², Sun-Sik Bae², Sik Yoon², Yoe-Sik Bae³, and Young-Whan Choi^{*1}

<u>Objectives</u>

- Isolation of vasodilation compound by activity-guided fractionation

- To investigate the vascular effects of fractionation Schisandra chinensis fruit.

Materials and Methods

○ Plant Material

Schisandra chinensis(SC) fruits were collected in September 2006 from Moonkyeong, Korea. A voucher specimen has been deposited in the Herbarium of Pusan National University.

 \odot Preparation of a ortic rings

Male Sprague-Dawley rats (250-300g), were anesthetized with 50 mg/kg sodium pentobarbital (i.p.). Changes in isometric tension were recorded using a force-displacement transducer (Grass FT 0.3, Quincy, MA, USA) connected to a Power Lab system 400 (ML 118).

<u>Results</u>

The dried fruits of SC (2.0 kg) were ground to a fine powder and were successively extracted at room temperature with *n*-hexane, CHCl₃, and MeOH. The hexane extract (308 g) was chromatographed on a silica gel, obtained 38 fractions and then measured vasodilation. The fraction 28 (800 mL, 600.5 mg) were separated on a silica gel column (100 x 3.0 cm) with 5% acetone in CH₂Cl₂ to give a gomisin A (GA) (482 mg). Pure GA was identified by HPLC, LC-MS and NMR analysis (Bruker DRX 400 spectrometer).

In order to provide some scientific rationales for such effectiveness, this study investigated the vascular effects of gomisin A (GA) from SC. In the endothelium (ED)-intact rings of rat thoracic aorta, GA ($1x10^{-6} - 3x10^{-4}$ M) caused a concentration-dependent relaxation which were markedly attenuated by removal of ED but also by pretreatment with N^G-nitro-L-arginine methyl ester (10^{-4} M) or 1H-[1,2,4]oxadiazolo[4,3-a]quinoxaline-1-one (3×10^{-5} M).

주저자 연락처 : 최영환 E-mail : ywchoi@pusan.ac.kr Tel : 055-350-5522

Fig. 1. Effect of hexane fraction on vasodilation. The hexane extract was chromatographed on a silica gel, obtained 38 fractions and then measured vasodilation.

Table 8. 13 C-NMR (100 MHz, CDCl₃) and H-NMR (500 MHz, CDCl₃) chemical shifts of Gomisin A isolated from the fruits of *Schisandra chinensis* B_{AIL}.

Carbon No.	δ _c	δ _H	<u>11</u> 12	105.9 147.9	6.49, s
1	152.1		13	135.0	
2	140.8		14	141.3	
3	152.3		15	121.9	
4	110.4	6.63, s	16	124.2	
5	132.1		17	15.8	0.82 d, (7.6)
6	40.6	6a-H: 2.69 d, (13.6)	18	30.1	1.26 s
		6β-H: 2.38 d, (13.6)	C 1 14	60.6,	3.91 (×2)
7	71.7	1.91 s	$C^{-1}, 1^{2}$	59.6	
8	42.1	1.87 m	0CH $C=2$ 1	61.0,	2 5 2 -
		9a-H: 2.34 dd,	CCH_3 C ⁻² , 1.	-	5.55, -
9	33.8	(7.6/3.2)	C-3, 12	2 56.0,	3.85, -
10	132.5	эр-п. 2.30 d, (14.0)	OCH ₂ O	100.8	5.97 d, (3.2)