3D CAD 파일을 이용한 Watchdog 로봇의 낙하 시뮬레이션 Drop Simulation of Watchdog Robot using 3D CAD files

*[#] 정태은¹, 최영석¹

*[#]Tae-Eun Chung(techung@induk.ac.kr)¹, Yong-Suk Choi¹ ¹ 인덕대학 정보메카트로닉스과

Key words : Drop simulation, Toy safety, Watchdog robot, 3D CAD

1. 서론

1999 년 소니 사에서 감성 지능형 애완견 완구 로봇 아 이보(Aibo)를 개발한 이후로 여러 기능을 갖춘 애완견 형상 의 로봇이 개발되고 있다. (주)로보로보에서는 강아지 형상 의 인터넷 보안 감시 애완견 로봇 watchdog 을 개발한 바 있으며, 이 제품은 전자 제품이면서 완구 제품으로 분류될 수 있다. Watchdog 로봇은 제품의 외장 재료가 플라스틱으 로 되어 있다. 따라서 일정 높이 이상에서 해당 제품이 떨 어졌을 경우에 발생할 수 있는 파편은 영, 유아 질식 사고 의 원인이 될 수 있다. 여러 나라에서는 파편이 발생할 수 있는 완구에 대한 안전 규정을 정하고 있다. 우리 나라에 서도 기술 표준원에서 완구 안전 검사 기준을 정하고 있 다.² 이 기준에 따르면 두께 4 mm 인 강철판 위에 850 mm ±50 mm 높이에서 완구를 낙하시켜 완구의 외관에서 파편 이 발생하지 않아야 한다. 완구 제품에 대해 외부 형상을 사진 측량법으로 측정한 후 유한 요소법을 이용하여 낙하 해석을 수행한 연구가 있었다. 3 그러나 해당 제품이 강철판 에 부딪히는 경우를 정확히 해석하기 위해서는 접촉 상태 를 정확히 재현할 필요가 있으므로, 3 차원 CAD 파일을 이 용하여 제품의 외관과 내장 부품을 고려한 상세 유한 요소 모델화 과정이 필요하다. 따라서 본 연구에서는 기술 표준 원에서 고시한 안전 검사 기준에 따라 해당 제품의 3 차원 CAD 파일의 정보를 이용하여 유한 요소 모델화 작업을 한 후 낙하 시뮬레이션을 수행하여 watchdog 로봇 제품의 안 전성 여부를 판별하였다.

2.3 차원 CAD 파일 분석

(주)로보로보의 인터넷 보안 감시 애완견 로봇인 강아 지 형상의 watchdog 로봇에 대해 낙하 시뮬레이션을 수행 하기 위하여 해당 모델의 CAD 파일에 대한 분석을 수행하 였다. 3 차원 CAD 프로그램인 Pro/Engineer Wildfire 2.0 을 이 용하여 부품 별 분석을 수행하였으며, Fig. 1, Fig. 2, Fig.3 에 는 각각 3 차원 CAD 형상에서 왼쪽 몸통 부와 왼쪽 다리 부 및 머리 부의 외관 모습이 나와 있다.

Fig. 1 Left body part of 3D CAD file

Fig. 2 Left leg part of 3D CAD file

Fig. 3 Head part of 3D CAD file

해당 모델은 몸통 부, 다리 부, 머리 부, 모터 부, 배터 리 부 등 총 148 개의 부위(part)들로 이루어져 있다. 이 중 낙하 시 내 충격성 평가를 위해 유한 요소 모델화가 이루 어지는 부위는 낙하할 때 지면과 접촉하여 부딪히게 되는 외관 부위이며, 나머지 내장 부품에 대해서는 질량을 반영 하였다. 제품의 전체 질량은 4.73 kg 이다. 몸통 부 등 외장 패널에 대해 조사한 물성 값은 다음과 같다. 외장 패널 재 료의 밀도는 1.07 kg/cm³, 탄성 계수는 2.0 GPa, 항복 응력은 55 MPa, 파단 응력은 65 MPa 이다.

3. 유한 요소 모델화 및 해석

로봇의 낙하 해석을 위해 해당 제품의 3 차원 CAD 파 일을 근거로 하여 유한 요소 모델화 작업을 수행하였다. 전체 셀(shell) 요소의 개수는 41447 개이며, 요소 크기는 4 mm 간격으로 분할하였다 Fig. 4 에는 유한 요소 모델화된 watchdog 로봇의 모습이 나와 있고, Fig. 5 에는 내장 부품을 포함한 유한 요소 모델의 모습이 나와 있다. 해석에는 비 선형 충돌 해석 프로그램인 Pam-crash 소프트웨어를 사용하 였다.

Fig. 4 Finite elements of watchdog robot

Fig. 5 Inside view of meshed watchdog robot

완구의 파편 발생 여부는 완구가 강철판에 충돌한 후 시간에 따른 최대 등가 응력(equivalent maximum stress)을 재 질의 파단 응력과 비교하여 판단하였다. 낙하 시뮬레이션 에서 완구가 가장 심한 충격을 받는 경우가 어떤 방향으로 떨어졌을 때인지를 알 수 없으므로 전, 후, 좌, 우, 위, 아 래 방향에서 제품이 낙하하였을 경우에 대해 낙하 시뮬레 이션을 수행하였다. Fig. 6 에는 아래(다리) 방향으로 watchdog 로봇이 낙하하여 강철판에 부딪히는 과정에 대한 해석 결과가 나와 있다. Fig. 7 에는 이러한 과정에서 최대 등가 응력(equivalent maximum stress)이 발생한 위치와 그 값 이 나와 있다. 최대 등가 응력은 강철판과 부딪힌 앞 발 아래의 바퀴 부위에서 발생하였으며, 최대값은 62.07 MPa 로 재료의 파단 응력인 65 MPa 의 95 %에 해당하며 파단이 발생하지 않았다고 판단할 수 있다.

Fig. 6 Drop simulation of watchdog

Fig. 7 Equivalent maximum stress at dropping from bottom direction

6 개 방향에서 낙하 시뮬레이션을 한 결과, Fig. 8 에서 볼 수 있는 바와 같이 후면(꼬리 방향)에서 낙하하였을 경 우에 가장 큰 최대 등가 응력이 나왔으며, 그 값은 63.17 MPa로 파단 응력의 97%에 해당하였다.

Fig. 8 Equivalent maximum stress at dropping from rear direction

4. 결론

기술 표준원의 안전 검사 기준에 따라 watchdog 로봇이 전, 후, 좌, 우, 위, 아래 방향으로 낙하하였을 경우에 대해 낙하 시뮬레이션을 수행하였다. 가장 취약한 경우는 후면 (꼬리 방향)에서 낙하하였을 경우로 나타났으며, 이 때 최 대 등가 응력이 파단 강도를 초과하지는 않았다. 이 경우 에 수치적으로는 외관에 파단이 발생하지 않았다고 할 수 있으나, 최대 등가 응력이 재질의 파단 강도의 97 %에 해 당하므로 완구 낙하 시 안전 검사 기준을 안전하게 통과하 기 위해서는 추가적인 보강이 필요할 것이다.

참고문헌

- 1. American Society for Testing and Materials, "F963-96a Standard Consumer Safety Specification on Toy Safety," 2000.
- 기술 표준원, "품질경영 및 공산품 안전 관리법 제 11 조, 안전검사기준(완구) 부속서 20," 2001.
- 정태은, 김준기, 신효철, "완구 안전검사 기준을 적용한 강아지 로봇의 낙하 해석," 한국정밀공학회 춘계학술대 회 논문요약집, p.163, 2005.