

Table. 1 Parameters of Reference Machine

2008

Parameter	Symbol	Value
Number of pole pair	р	1
Inner radius of rotor magnet	R_1	13.5mm
Outer radius of rotor magnet	R_2	20.0mm
Radius to the coil	R_{c}	21.2mm
Inner radius of stator iron	R_3	25.0mm
Outer radius of stator iron	R_4	36.0mm
Axial length	L	6.0mm
Coercivity of rotor magnet	H_{c}	883KA/m

 $T = k_t I_0 \tag{2}$

(Finite Element Method, FEM) , Maxwell

(4) axial array 7 4

17.5mm , 8mm, 10mm 0.2mm . 4mm .⁽⁵⁾ 107×10³ N/mm .

3.2

- 1. J. Yi, Y. Yoo and M. D. Noh, "Optimal Design of Passive Magnetic Bearings," *ICMDT*, 2007.
- L. W. Langley and R. L. Fisher, "Toroidally Wound Brushless DC Motor", US Patent 4,547, 1985.
- F. Caricchi, F. Crescimbini, and O. Honorati, "Low-Cost Compact Permanent Magnet Machine for Adjustable-Speed Pump Application," *IEEE Transactions on Industry Applications*, Vol. 34, No. 1, pp.109-116, 1998
- J. Yi, Y. Yoo and M. D. Noh, "Optimal Design of Passive Magnetic Bearings using Permanent Magnets" KSPE, 2007.
- 5. J. Yi, Y. Yoo and M. D. Noh, "Design of Micro Flywheel Energy Storage System "*KSME*, 2007.