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AbstractsAbstractsAbstractsAbstracts

Water resources management depends on dealing inherent uncertainties stemming from climatic and

hydrological inputs and models. Dealing with these uncertainties remains a challenge. Streamflow

forecasts basically contain uncertainties arising from model structure and initial conditions. Recent

enhancements in climate forecasting skill and hydrological modeling provide an breakthrough for

delivering improved streamflow forecasts. However, little consideration has been given to methodologies

that include coupling both multiple climate and multiple hydrological models, increasing the pool of

streamflow forecast ensemble members and accounting for cumulative sources of uncertainty. The

approach here proposes integration and coupling of global climate models (GCM), multiple regional

climate models, and numerous hydrological models to improve streamflow forecasting and characterize

system uncertainty through generation of ensemble forecasts.

Keywords : Ensemble Streamflow Forecast, GCM, Uncertainty, Rainfall-Runoff ModelKeywords : Ensemble Streamflow Forecast, GCM, Uncertainty, Rainfall-Runoff ModelKeywords : Ensemble Streamflow Forecast, GCM, Uncertainty, Rainfall-Runoff ModelKeywords : Ensemble Streamflow Forecast, GCM, Uncertainty, Rainfall-Runoff Model

....................................................................................................................................................................................................................................................................................................................................................................................................................................

1. Introduction1. Introduction1. Introduction1. Introduction

Water resources planning and management efficacy is subject to capturing uncertainties stemming

from climatic and hydrological inputs and models. Accounting for and properly dealing with these

propagating uncertainties remains a formidable challenge. Streamflow forecasts fundamentally contain

uncertainties arising from assumed initial climatic conditions, model structure, and modeled processes.

While streamflow forecasts continue to play a pivotal role in resource and economic planning by refining

process models (e.g. crop, water resources, economic), quantifying the associated uncertainties is critical

for climate risk management, and may posses equally significant implications for basin management.

Approaches to streamflow forecasting predominantly fall into two categories: statistical or dynamical

(climatic-hydrological model integration.) The former frequently utilizes predictors of sea-surface

temperature or a related index to directly estimate streamflow through regression techniques (Souza

Filho &Lall 2003). The second approach seeks to couple climate and hydrological processes by passing

downscaled information in an iterative (online) or static (offline) fashion. Although the mechanics differ,

forecast uncertainty estimates are achievable in either approach by applying Monte Carlo stochastic
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methodologies to generate forecast ensembles. Recent enhancements in climate forecasting skill and

hydrological modeling serve as an impetus for further pursuing models capable of delivering improved

streamflow forecasts.

In this paper, a general streamflow forecasting framework incorporating multiple climate and hydrologic

models from dynamical and statistical approaches is proposed. The problem setting, including

descriptions of existing climate, hydrologic and coupled model systems and processes is initially outlined.

Following is a description of the application site chosen and associated data sets employed for

demonstration. The proposed forecasting framework is subsequently outlined in detail, followed by

results of imposing this framework through a hindcast on the application site. The paper concludes with

a summary and discussion.

2. Description of Application Siteand Data2. Description of Application Siteand Data2. Description of Application Siteand Data2. Description of Application Siteand Data

2.1 Iguatu basin in the Jaguaribe River basin, Brazil2.1 Iguatu basin in the Jaguaribe River basin, Brazil2.1 Iguatu basin in the Jaguaribe River basin, Brazil2.1 Iguatu basin in the Jaguaribe River basin, Brazil

The streamflow forecasting framework proposed, and outlined in the subsequent section, is applied to

the Iguatu basin (19,100 km2), which lies within the larger Jaguaribe basin, a 72,000 km2 semi-arid area

in northeast Brazil. The city of Iguatu lies at the outlet of this basin on the Jaguaribe River. The

basin experiences one rainy season annually, from January to May. During this time, the Atlantic

Intertropical Convergence Zone (ITCZ) reaches its southernmost position, lying very near to or over the

region, enhancing atmospheric instability and producing precipitous systems. Abnormal latitudinal

migrations of the ITCZ are associated with excess (southward) or deficit (northward) rainfall. Previous

investigations have firmly established that SST anomaly forcing is the primary factor responsible for the

interannual variability of rainfall in northeast Brazil Positive (negative) rainfall anomalies are

frequentlyobserved when the Atlantic SSTs are colder (warmer) than normal north of the Equator and

warmer (colder) than normal south of the Equator. Droughts also tend to coincide with the El Niño–

Southern Oscillation (ENSO) episodes. Slowly evolving SST anomalies, particularly in the tropical

oceans, can be predicted with some degree of skill at lead times of several months. Seasonal rainfall

forecasts with lead times up to four months are skillful over northeast Brazil (Sun et al. 2006).

2.2. Application site data2.2. Application site data2.2. Application site data2.2. Application site data

Observed precipitation and streamflow time series exist for the 1912-1996period, although the monthly

streamflow record at Iguatu is incomplete. Figure 1 illustrates January-June streamflow at Iguatu

(essentially annual) for years with no missing months. Average daily precipitation over the basin is

calculated using the Thiessen polygon method. Monthly evaporation is based on climatological values

(Basin data acquired from the Planning Study of the Jaguaribe River Basin [COGERH, 1998]).

ECHAM4.5 GCM precipitation data is obtained from the International Research Institute for Climate

and Society’s Data Library (Roeckner et al. 1996).

3. Forecasting Approach and Model Descriptions3. Forecasting Approach and Model Descriptions3. Forecasting Approach and Model Descriptions3. Forecasting Approach and Model Descriptions

This approach proposes the integration of multiple GCMs, RCMs, hydrologic models, and multi-model

combination techniques in successive fashion for ensemble streamflow forecasting. The overall

framework proposed is presented pictorially in Figure 1. Generally, persisted or forecasted sea-surface

temperatures drive GCMs, producing low resolution precipitation that may be downscaled with statistical

or dynamical RCMs. Dynamical approaches often require bias correction based on hindcasts and

historical observations. If desired, downscaled precipitation (and other climatic variables) may be run



1390

through a weather generator to produce an ensemble of plausible scenarios, further increasing the

forecast pool. Downscaled precipitation is fed into hydrological models to generate streamflow forecasts,

which are subsequently combined to create a super-ensemble for probabilistic evaluation. To impose the

framework on the Iguatu basin, a streamflow hindcast is performed over the 1974-1996 period.

Figure 1: Proposed framework for streamflow forecasting.

4. Results and Analysis4. Results and Analysis4. Results and Analysis4. Results and Analysis

This bias correction methodology is fairly effective for the Jaguaribe basin, but some years still

indicate insufficient or excess precipitation in comparison to the observed record. Figure 2 depicts box

plots of the January-June total precipitation for each corrected ensemble member and the observed record

for 1971-1996. While for most years the ensemble members envelop the observed value, as desired, a

few years indicate under or over predictions by all ensemble members (e.g. 1974 and 1976) even after

bias correction. However, the general wet or dry bias of the RSM model appears to be effectively

removed. The correlation coefficient between the ensemble mean and observed precipitation is 0.79; the

median RPSS for the ensemble mean equals 0.1, indicating a small improvement over climatology.

a) dynamic downscaling b)statistical downscaling

Figure 2. Box plots of downscaled January-June total precipitation for 1971-1996. Boxes constructed

from all ten bias corrected RSM ensemble members; observed values shown as filled circles.
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The SMAP and Sacramento SMA hydrological models are calibrated against 1913-1969 monthly

streamflow at Iguatu by optimizing model parameters. The objective function for optimization in both

cases centers on minimizing the sum of the squared errors. Initial parameters values for the Sacramento

SMA model were taken from Thiemann et al. (2001). Correlation coefficients for the models are nearly

identical at 0.90. Monthly time-series (not shown here) also indicate strong correlation, with coefficients

at 0.87 and 0.90, for SMAP and Sacramento SMA, respectively.

Coupling the climate and hydrological models, a streamflow hindcast is performed on the 1974-1996

period. Four ensembles of hindcasts (ten members each) are produced by combining the two

downscaling techniques with the two hydrological models. Figure 3 portrays results of driving the

calibrated SMAP and Sacramento SMA models with the statistically downscaled and bias corrected

precipitation ensemble. Streamflow ensembles are displayed as box plots, with the box covering the 25th

to 75th percentile; observed values are indicated by filled circles. Coupled model skill scores are

reasonably strong, and suggest that the models and precipitation downscaling techniques generally

capture the features of the basin. The SMAP coupled models appear slightly superior to the Sacramento

SMA models, especially considering the likelihood function ratio and BIC.

Figure 3. Box plots of statistically downscaled January-June total precipitation for 1971-1996. Boxes

constructed from ten downscaled ECHAM4.5 ensemble members; observed values shown as filled circles.

The overall performance of the framework on the Jaguaribe basin appears robust in comparison to

similar basin studies. Souza Filho & Lall (2003) construct a semi-parametric streamflow forecast model

conditioned on sea surface temperatures, and produce similar skill. Although the framework proposed

here is considerably more complex and multifaceted than the semi-parametric model, it does boast

sufficient flexibility for improvements at many stages, model substitutions, orother potential lines of
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analysis.
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