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AbstractAbstractAbstractAbstract

The governing equations in generalized curvilinear coordinates for a 3D pulsatile flow are the

Incompressible Navier-Stokes (INS) equations with the artificial dissipative terms and continuity equation

discretized using a second-order accurate, finite volume method on the nonstaggered computational grid.

This method adopts a dual or pseudo time-stepping Artificial Compressibility (AC) method integrated in

pseudo-time. The computational technique implements the implicit approximate factorization method of

the Beam and Warming method (1978), which is the extension of the Alternate Direction Implicit (ADI)

method. The algorithm yields practically identical velocity profiles and secondary flows that are in

excellent overall agreement with an experimental measurement (Rindt & Steenhoven, 1991).
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1. Introduction1. Introduction1. Introduction1. Introduction

Computational Fluid Dynamics (CFD) method widely deals with the variety of engineering

applications; a numerical method has developed to simulate the various unsteady problems such

as the simulations of river hydraulics including natural river channels with complex hydraulic

structures such as bridge piers, abutments, and complexity of flow in a meandering channel

and cardiovascular fluid mechanics called blood flows. CFD methods can predict and evaluate

quantities of complex engineering flow situations according to Reynolds numbers. The main

challenges of CFD method in the accurate simulation of complex engineering flows originate

from various geometric complexities and the physics of flow. It is important objective of this

study to contribute to the application and validation of the unsteady simulations. To evaluate
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this numerical ability of the method to simulate flows, we apply it to compute pulsatile flow in

a circular tube with strong curvature. The test case (Rindt & Steenhoven, 1991) is chosen to

demonstrate the efficiency and the accuracy of this method in a complex 3D pulsatile flow.

2. Governing Equations2. Governing Equations2. Governing Equations2. Governing Equations

The governing equations in generalized curvilinear coordinates, using dual or pseudo

time-stepping Artificial Compressibility (AC) method to couple pressure and velocities, are the

three-dimensional, incompressible Navier-Stokes (NS) equations and continuity equation,

nondimensionlized by  and  . The governing equations follow
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where x l are the Cartesian coordinates   and  . 
 are curvilinear coordinates  

and , respectively, 
 are the metrics of the geometric transformation,   are the

components of the contravariant metric tensor, and  is the Jacobian of the geometric

transformation.   are the contravariant velocity components,    
 ,  are the

Cartesian velocity components, and   and  , and  is the static pressure divided by

the density. Finally,  is the Reynolds number of the flow, which is based on

characteristic length and velocity scales and the kinematic viscosity of the fluid.

The governing equations are discretized in strong conservation form using a three-point

backward, second order accurate Euler implicit scheme for the temporal derivative and

three-point, second order accurate central differencing for the spatial derivatives,
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The flux  is the flux  at the cell interfaces and D is the artificial dissipation flux,

especially, the matrix valued scheme (Lin and Sotiropoulos, 1997),
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where  is a constant,   is the absolute value of the Jacobian matrix     .

3. Numerical Methods3. Numerical Methods3. Numerical Methods3. Numerical Methods

The governing equations are discretized in strong conservation form using a second order

accurate finite volume method on a non-staggered grid. To enhance the efficiency and

robustness of the algorithm, we can implement the local dual time stepping and the implicit

method of the Beam and Warming method which is the extension of the ADI method.

The discrete dual-time equations can be written as follows,
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The linearization in pseudo-time is as follows,
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where ℒ  is the Jacobian of the spatial residual in the right hand side () of equation (5),

ℒ    . The resulting equation is approximated by the following approximate

factorization,
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Equation (7) can be solved through a three step procedure each one involving the inversion

of a block tridiagonal system,
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The local time step is computed at each grid,

  min 

max  

CFL


Re
 max   

VN 


 (9)

where  is the spectral radius of the Jacobian matrices, CFL is the

Courant-Friedrich-Lewis number and VN is the von Neumann number.

4. Results and Conclusion4. Results and Conclusion4. Results and Conclusion4. Results and Conclusion
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The numerical solution is to validate the accuracy of this solver for unsteady flow, especially, the

pulsating flow in a circular tube with 90° bend after then, the developed numerical model is applied

to simulate blood flows. The simulation of pulsating flow in a curved tube with 90° bend is a

more challenging study of the temporal flow condition to evaluate the abilities of the our numerical

method. The experimental flow is one of six unsteady flow experiment conducted by Rindt &

Steenhoven (1991) using Laser Doppler Velocimeter (LDV).

The pulsating flows are generated by the combined effects of the a pump that provided a

steady flow with    and a piston pump that introduced a sinusoidal flow variation

with a Reynolds number range of the   ≤ Re ≤ . Therefore, Reynolds numbers

for retrograde and forward flow conditions are  and , respectively. One cycle of

flow pulsations is divided into 32 physical time steps during the calculation with the

dimensionless physical time    called the period of the incoming flow oscillation.

Boundary conditions are specified at the inlet, outlet, and solid wall boundaries. Inflow

boundary conditions are implemented by Dirichlet conditions for the fully developed velocity

distribution. No slip and no flux boundary conditions are used on the solid walls. Zero

gradient boundary conditions at the outflow boundary and on the symmetry plane (at   )

are used (Neumann condition). The pressures at all boundaries are obtained by linear

extrapolation from interior nodes. Especially, the inlet boundary condition with time is

explained as a superposition of steady and unsteady velocity profiles of the pulsating

flow given by Eq. (10),
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where  is the Bessel function of the first kind and order zero,  is the radius of the

pipe, i is the imaginary unit, and  represents the constant. To evaluate the

performance of the implicit method in a 3D flow of a curved 90 degree circular bend, we

choose a test case: The finest meshes are  ×  ×  grid nodes. The CFL number

used in this numerical study is CFL  .
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Fig 1. Pulsatile flow at 90° pipe bendFig 1. Pulsatile flow at 90° pipe bendFig 1. Pulsatile flow at 90° pipe bendFig 1. Pulsatile flow at 90° pipe bend

at the pulsation cycleat the pulsation cycleat the pulsation cycleat the pulsation cycle t = 0.25 T

Fig 2. Pulsatile flow at the pulsation cycleFig 2. Pulsatile flow at the pulsation cycleFig 2. Pulsatile flow at the pulsation cycleFig 2. Pulsatile flow at the pulsation cycle
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Fig 3. Pulsatile flow at 90° pipe bendFig 3. Pulsatile flow at 90° pipe bendFig 3. Pulsatile flow at 90° pipe bendFig 3. Pulsatile flow at 90° pipe bend

at the pulsation cycleat the pulsation cycleat the pulsation cycleat the pulsation cycle t = 0.75 T

Fig 4. Pulsatile flow at the pulsation cycleFig 4. Pulsatile flow at the pulsation cycleFig 4. Pulsatile flow at the pulsation cycleFig 4. Pulsatile flow at the pulsation cycle

t = 0.75 T

AcknowledgementAcknowledgementAcknowledgementAcknowledgement

The authors wish to acknowledge the financial support by SNU SIR Group of the BK21

research Program funded by Ministry of Education & Human Resources Development.

ReferencesReferencesReferencesReferences

1. Beam, R. M., and Warming, R .F. (1967). An implicit finite-difference algorithm for hyperbolic

systems in conservation-law form, Journal of Computational Physics, Vol. 82, No. 2, pp.

87-110.

2. Ge, L., and Sotiropoulos, F. (2005). 3D unsteady RANS Modeling of complex hydraulic

engineering flows. I: Numerical model, Journal of Hydraulic Engineering, Vol. 131, No. 9, pp.



1629

800-808.

3. Lin, F. B., and Sotiropoulos, F. (1997). Assessment of artificial dissipation models for

three-dimensional incompressible flow solutions. ASME J. Fluids Eng., 119(2), pp. 331-340.

4. Park, K., and Lee, K. S. (2007). Numerical simulation of three dimensional incompressible flows

using the Navier-Stokes equations with the artificial dissipation terms and a multigrid method,

Proceedings of the Korea Water Resources Association Annual Conference, pp. 1392-1395.

5. Park, K., and Lee, K. S. (2007). Numerical simulation of unsteady flow in a circular tube with

strong curvature using the Navier-Stokes equations, Proceedings of the Korea Society of Civil

Engineers Association Annual Conference, pp. 4211-4214.

6. Park, K., Lee, K. S., and Kim, K. (2008). Incompressible unsteady Flow in a circular tube

using the Navier-Stokes Equations, The 1st SIR BK21 International Conference on

Sustainable Infrastructure, Seoul, Korea, pp. 146-147.

7. Rindt, C. C. M., and van Steenhoven, A. A. (1991). Unsteady entrance flow in a 90° curved

tube, Journal of Fluid Mechanics, Vol. 226, pp. 445-474.




