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Abstract 
 

This paper develops an aero engine LPV 
mathematical model to exactly describe aero engine 
dynamic process characteristics, eliminate the effect of 
modeling error. Design FDF with eigenstructure 
assignment. The simulation results of turbofan engine 
control system sensor fault show that this method has 
good performance in focusing discrimination in fault 
signal with modeling eror, enhancing the robustness to 
unknown input, detecting accuracy is high and 
satisfiying real-time requirement. 
 

1. Introduction 
 

With the urgent demand for large thrust, long 
endurance and high reliability of modern aero power 
system. The foreign advanced aero engines all have 
state detection and fault diagnosis system, and takes 
on the trend of fire-flight-propulsion integration 
control. According to the special working conditions 
of the aero engine, the FADEC system must have 
rigorously considerable security and dependability, 
this demand sometimes seems to be more important 
than just improving control system performance. Once 
the control system runs error, it can be a disaster of the 
staff and financal resource. 

In recent twenty years there has been growning 
research in fault diagnosis of the FADEC. For 
example, the ADIA of NASA Lewis research center[1] 

etc. Many ways are analysis redundancy based on 
object steady linear model. But the aero engine is a 
typical non-linear system, its exterior and internal 
condition parameters quickly change in a large extent, 
the detection strategy lacking of robustness can't 
ensure engine’s best reliability. How to improve the 
robustness of fault detection has become research 
focus and a lot of research works have been done[2] [3] . 
Among the various approaches that have been 
proposed, the fault detection filter with eigenstructure 
assignment can improve the unsensitivity of parameter 
change and has received more and more attention[4]. 

The LPV（Linear Parameter Varying）object is an 
important type of time-varying system, its state 
equation is real-time measurable set and may be 
certain function of some time-varying parameters 
which can be predicted or be measured[5]. Because the 
dynamic character of aero engine is characterized by 
non-linear and time-varying, it can be expressed by 
LPV model which uses thermodynamics parameter or 
its variety rate, the LPV model can describe aero 

engine’s dynamic process better. This paper uses 
Jacobian method to establish engine LPV model and 
make use of eigenstructure assignment to design the 
fault detection filter for detecting sensor fault and 
provides numberical examples. 
 
2. The Establishment of Aero Engine’s LPV Model 
 
2.1 Linear parameter varying system 

The typical linear parameter varying system’s 
model can be described as follows: 
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state vector nRtx ∈)( , Output vector pRty ∈)( , 
Input vector mRtu ∈)( , kkkk DCBA ,,,  

( Nk L，，10= ) are the N+1 partial models. )(tρ is 
system parameter or exterior input（such as height, 
mach number etc） , and is boundary closed set. 
If )(tρ  is constant, the system is LTI and )(tρ  can 
be replaced by ρ . 

 
2.2 The aero engine’s LPV model  

The X turbofan engine is twin-duct, high thrust- 
weight ratio, birotary and afterburning. The engine’s 
non-linear model as follows: 
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If )(⋅f and )(⋅g  are differentiable in flight 
envelope, we can use different methods to establish 
the partial linear model. If we have already known the 
state parameter, the LVP model can be constituted 
through little variation of state parameter and input 
parameter, or through a set of input-output data 
identification to get a set of linear model: 
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Equation (3) expresses the feature of system (2) 
near the linear point, which usually is the steady 
balance points. This Paper uses the Jacobian method 
to develop model and its architecture presented in 
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Fig.1. To expase the non-linear model of aero engine 
at the point ),,( 000 ρux by Taylor series as follows: 
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Where 0xxx −=Δ ， 0uuu −=Δ , subscript 0 
represents an initial value. 

Based on the partial model, use interior insert or 
fitting to get the coefficient matrix of Jacobian LVP 
model:  
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According to different ρ to adjust different A, B, 
C, D. 
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Fig.1  The Jacobian LPV model principle diagram 

 
To solve Jacobian LPV model, the initial value 

0x , 0y and 0u must be given. 0x& can be non-zero value. 
A problem demands attention. If using the 
interpolation of subsection constant function at the 
balanced points, it is essential to use variable 
transform to eliminate algebra rings for 
output y switch among the balanced points. 
Computing the coefficient matrix by subsection linear 
interpolation through LPV model’s input and output 
relation will be better. 

In state equation, the elements may make a great 
difference and become ill-conditioned matrix. To 
avoid greater calculation error, particularly in solving 
inverse matrix, matrix normalization must be done. 
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where 
xxn ANNA 1−= , uxn BNNB 1−= , xyn CNNC 1−= ,

uyn DNND 1−= . 

Normalization matrix as follows:  
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3. Design of Fault Detection Filter 
 
3.1 Design principle 

Consider the given system formulated explicitly in 
equation (7) below: 
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where the ΔA represents state matrix parameter 
perturbation. In order to improve the detection 

robustness of uncertain input, the residual output unit 
add a weighting matrix.  
 

 
Fig.2  The fault detection filter’s scheme with 

residual weighting matrix  
Aim at the system (7), design a dynamic observer as 

follows: 
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where K is the n × m dimensions gain matrix of the 
observer, nRtx ∈)(ˆ is state estimation vector.  

mRty ∈)(ˆ is output estimation vector.  
The state estimation error e(t) and weight output 

residual r(t) are 
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where mpRW ×∈ is a constant weighting matrix. 
Residual output equation is 

[ ]

[ ] ⎪
⎭

⎪
⎬

⎫

=−=
Δ+−=

−−−Δ+=−=

)()(ˆ)()(
)()()(

)(ˆ)()(ˆ)()()(ˆ)()(

tWCetytyWtr
tAxteKCA

tytyKtxAtxAAtxtxte &&&
 (10) 

Defining Ac=A―KC, the Laplace transform of shift 
of output residual r(t) is 

)()()( 1 sAxAsIWCsr c Δ−= −    (11) 
Note from Eq.(10) that the effects of parameter 

variation can be decupled from the residual if 
correctly using eigenstructure assignment by 
weighting matrix W and K to make Eq.(11) as 
output-zeroing. Designing method is summaried as 
follows: 
(1) Calcuate residual weighting matrix W to make 

WCΔA=0 . 
(2) Determine the eigenstructure of the observer: the 

rows of H=WC should to be the p left 
eigenvectors of the observer, the（n-p）left 
eigenvectors should to assure the rationality of 
model mtarix. 

(3) Calculate the filter gain matrix K, satisfying the 
eigenstructure needs. 

 
3.2 Fault detection 

According to FDF’s output error residual vector has 
fix-directional characteristics, the fault event vector 
can be detected by comparing the direction of nomal 
vector and fault residual vector.  

Defining minimal projection length of sensor fault 
vector: 

System Sensor 

Observer

W

fault 

residual  r (t) 

y(t)

+ 
—

u(t)

disturbance 
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If ),..,2,1( mjMLFj = is least, the No.j sensor is 
failure. 
 

4. Numberical Example 
 

4.1 The LPV model verification 
Establish X turbofan engine LPV model with the 

high-compress speed Nch as adjusting variable, 
simulation can verify model’s dynamic tracking 
characteristic for low-compressor speed Ncl. 
Referenced model is the engine non-linear dynamic 
model, input variable is the fuel of main combustion 
chamber, sample cycle is 10ms. 

From engine non-linear model, compute matrix A 
and B by subsection linear interpolation and 
three-order polynomial fitting at different speed. Fig. 
3 and Fig.4 show the contrast. 
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Fig.3  Matrix A elements interpolation and fitting 
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Fig.4  Matrix B elements interpolation and fitting 

 
4.2 Sensor fault detection 

Low-compressor speed sensor has occurred hard 
failure and soft failure, the FDF output and MLF value 
are shown as Fig.5 and Fig.6(State Point: H=8.0KM  
Ma=0.8). ln , hn , *

2p , *
4T  sensor’s MLF constrast is 

shown as Table1. 
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Fig.5  FDF’s Nl output with hard failure 
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Fig.6  FDF’s Nl output with soft failure 

 
Sensor ln fault hn fault *

2p fault *
4T fault

MLF1 0.0516 0.2853 0.9901 0.9991
MLF2 0.1884 0.0733 0.9927 0.9927
MLF3 0.4639 0.3471 0.0149 0.9993
MLF4 0.9800 0.7181 0.9995 0.0297

 

Table 1  Four sensors MLF value contrast. If the 
sensor’s MLF is least, it’s in failure. 

 
5. Conclusion 

 
This paper provides an algorithm that designs FDF 

based on aero engine LPV model. From numberical 
simulation in the flight envelope, we can draw the 
following conclusions: 
(1) LPV model that comparing with ordinary 

non-linear model can simlplify computational 
complexity, especailly in dynamic process, 
meanwhile accuracy is better. 

(2) FDF based on LPV model can improve 
robustness in detection to unknown input and 
system parameters perturbation. Online fault 
detection time is not exceed four smpling periods. 
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