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Abstract 

 
The low-speed preconditioning technique is applied 

to solve the compressible Reynolds averaged Navier–
Stokes equations for low-speed flows. The space 
discretization is based on Roe's flux-difference 
splitting with third-order-accurate MUSCL 
extrapolation. Time integration is performed 
employing a diagonal approximate factorization 
algorithm. The dual-time stepping has been 
incorporated to solve the unsteady flows. Full 
multigrid method is implemented to accelerate the 
convergence rate. To verify the algorithms several 
cases have been tested. Demonstrated the 
improvement on convergence and quality of the 
solution.  
 

Introduction 
 

Density based time-marching algorithms are widely 
used to solve the compressible Navier–Stokes 
equations. They have favorable convergence rate and 
accuracy in the computation of compressible flows. 
However, these algorithms cannot be directly applied 
to incompressible flows computation because of the 
“stiffness” of the governing equations. Sometimes 
there are problems containing mixed incompressible 
and compressible flows, and we also expect a single 
CFD solver can be used to compute flow fields from 
low-speed to high-speed flows. The preconditioning 
technique modifies the time-derivative term of N-S 
equations by pre-multiplying it with a preconditioning 
matrix, which rescale the eigenvalues of the system of 
equation to alleviate the numerical stiffness 
encountered in low-speed flows. Therefore it can 
accelerate the convergence to a steady state, and unify 
the solving algorithms at all Mach numbers. In 
addition modifying the numerical dissipation part of 
the inviscid flux according to precondition, resulting 
in better accuracy of the solution. 

The artificial compressibility method of Chorin1) is 
the original idea of low-speed precondition; 
subsequently many preconditioning methods were 
developed in the past several decades2),3),4). In this 
paper the preconditioning method introduced by 
Weiss and Smith combined with full multigrid method 
is implemented to solve the Reynolds averaged N-S 
equations for viscous and inviscid flows at low Mach 
numbers 

 
Low-speed Preconditioning  

 

The Navier-Stokes equations in general coordinates 
have the following forms: 
    ( − ) c vW F F d 0dV A

t Ω ∂Ω

∂ + =
∂ ∫ ∫  (1) 

W
u
v
w

E

ρ
ρ
ρ
ρ

ρ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦ ,   

F
x

c y

z

U

uU n p

vU n p

wU n p

HU

ρ

ρ

ρ

ρ

ρ

⎡ ⎤
⎢ ⎥
⎢ ⎥+⎢ ⎥
⎢ ⎥
⎢ ⎥= +⎢ ⎥
⎢ ⎥+⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦   , 

1

2

3

0

vF
σ
σ
σ
ϕ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦  

x y zU n u n v n w= + + ,  
1 x xx y xy z xzn n nσ τ τ τ= + +
2 x yx y yy z yzn n nσ τ τ τ= + +  
3 x zx y zy z zzn n nσ τ τ τ= + +

1 2 3u v w qϕ σ σ σ= + + −  
( )x y z
T T Tq n n n
x y z

κ ∂ ∂ ∂=− + +
∂ ∂ ∂  

E H pρ ρ= − ,  
2 2 2( ) 2PH C T u v w= + + +

 
Transforming the governing equations to primitive 

variables gives: 
    ( − ) c vQ F F d 0M dV A

t Ω ∂Ω

∂ + =
∂ ∫ ∫  (2) 

             0       0      0       

                 0      0       

           0            0       

          0       0            

1              

p T

p T

p T

p T

p T P

u u
W

M v v
Q

w w

H u v w H C

ρ ρ
ρ ρ ρ
ρ ρ ρ
ρ ρ ρ

ρ ρ ρ ρ ρ ρ

⎡
⎢
⎢
⎢

∂= =
∂

− +⎣

⎤
⎥
⎥
⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎦

,  

And replacing matrix M with Weiss-Smith4) 

preconditioning matrix,  
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Thus the preconditioned N-S equations can be 
achieved:  
    ( − ) c vQ F F d 0P dV A

t Ω ∂Ω

∂ + =
∂ ∫ ∫  (3) 

Where 
2

1 ( 1)
a
γ βφ
β

+ −= , a  is speed of sound, β  

is the adjustable preconditioning parameter. The 
optimal value of β  should be the square of local Mach 
number, However, in order to avoid singularities 
occurring in matrix P close to stagnation regions and 
in boundary layer where the Mach number approaches 
zero, the value of β  must be bounded according to the 

666



AJCPP 2008 
March 6-8, 2008, Gyeongju, Korea  

solving conditions. Therefore, the final definition of  
β  is, 
 ∞

2( ( , , ),1.0)inv visMin Max kMβ β β=   (4) 
Where,  
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invβ is inviscid bounding variable, when 0.5M ≥  
the preconditioned equations return to the original 
forms. visβ is used for viscous computation, and RΔ  is 
cell Reynolds number. ∞

2kM is introduced to take into 
account inflow conditions; in general one can 
choose 1.0k ∼ , for easy case 0.2k ∼ , for hard 
case 3 10k −∼ . In order to keep consistency with 
solving method of compressible flows and preserve 
the conservative characteristic, equation (3) is 
converted back to conservation form,  
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Equation (7) is the final form of preconditioned 
equation; except for 1PM−  it is unchanged compared 
with equation (1). The Jacobian matrices of 
preconditioned governing equation 1 cFA MP
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Setting proper value of β , all of the preconditioned 
eigenvalues can be of the same order of magnitude 
when Mach numbers less than unity, consequently the 
stiffness is eliminated under small-Mach-number 
circumstances. While the eigenvalues of equation (1) 
are ( ) ( , , , )A U U U U aλ = ± , if 1aM <<  the value of 
( )/U a U± is very large. Above is the principle of 
accelerating convergence of preconditioning. The 
preconditioned governing equations lost the physical 
significance of original time-derivative term, yet the 
converged steady solutions will not changed according 
to preconditioning. 

For the purpose of time-accurate unsteady 
simulations, a dual time-stepping procedure is also 
introduced,  

 
  

 ( − ) 

1

c v

W W

F F d 0

dV PM dV
t

A
τ

−
Ω Ω

∂Ω

∂ ∂+
∂ ∂

+ =

∫ ∫
∫

 (8) 

Where t is physical time, τ is pseudo time. The 
flow field at each physical time step goes through an 
inner pseudo-time loop where preconditioning is 
applied, maintaining the solutions accuracy at the 
physical time-step level. Applying first-order implicit 
discretization for pseudo time, second-order 
discretization for physical time, and then utilizing 
linearization the following discretized formulation 
achived,  
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Numerical Method 

 
In this paper cell-centered finite-volume method is 

used to discretize the governing equations; so in each 
cell the residual R ′  is calculated as following, 
 −  c v

, ,

1 (F F )m
I J K

R A′ = − Δ
Ω ∑  (11) 

Roe's5) flux-difference splitting is used for spatial 
discretization of inviscid flux. The numerical flux at 
the cell face is obtained by using the following 
numerical flux formulas,  
 1F [F ( ) F ( ) ( )]

2c c L c R R Lq q A q q= + − −  (12) 

Here Lq and Rq  denote left and right state variables, 
A is the preconditioned Jacobian matrix evaluated by 
using Roe-averaged after diagonalizing process. 
Namely ( )A A q=  , 1A T T−= Λ ,  where T and  

1T−  are right and left eigenvector matrices, and Λ  is 
a diagonal matrix consist of the absolute of 
eigenvalues. The original Roe scheme only has first-
order accuracy, hence MUSCL extrapolation of Van 
Leer6) with Van Albada limiter is used to achieve 
second or third order accuracy. This Roe scheme 
depicted above modified the numerical dissipation 
term according to preconditioning, resulting in more 
accurate solution for low Mach number flows. While 
the original counterpart have an amount of numerical 
dissipation that does not scale correctly when Mach 
number approaches zero. Central differencing is used 
for viscous terms; in the finite-volume system Green’s 
theorem is used for first derivatives evaluation. 

A diagonal form of an implicit approximate-
factorization algorithm7) is used to equation  (10) for 
time integration, where only scalar tridiagnal 
inversions rather than block operator are implemented. 
This is a robust and rapid scheme, and it is popular in 
CFD community. 

Boundary conditions related to characteristics have 
to be modified based on preconditioned system. A 
flux difference formulation8) is implemented for the 
far field boundary conditions,  
 ∞ ∞0.5( ) 0.5[sign(A)( )]b e eQ Q Q Q Q= + − −  (13) 

Where -1sign(A)  sign[ (A)] T Tλ= , evaluated by 
using Roe-averaged variables, ∞Q  is freestream value 
and eQ  is extrapolated from interior mesh. 
 

Multigrid Algorithms 
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The explicit and implicit time-stepping and iterative 
schemes in general can reduce the short-wavelength 
error components on a given grid efficiently. While 
the longer wavelength components are usually hardly 
damped. This results in a slow convergence to the 
steady solutions after some times of initial iterations. 
By introducing a sequence of successively coarser 
meshes, the longer wavelength components on the 
finest meshes becomes short-wavelength components 
on the coarser meshes and can be damped efficiently. 
Consequently the entire error is reduced quickly, and 
the convergence is significantly accelerated. This is 
the basic principles of multigrid algorithms.  

In this paper full approximation storage (FAS) and 
full multigrid algorithms9) are implemented. For the 
preconditioned systems there are two choices for 
multigrid implementation, transferring the residuals 
based on the preconditioned system or the physical 
residuals to the next grid. That is to say, first to 
transfer residuals or to pre-multiplying the 
preconditioning matrix. In numerical experiment we 
found that transferring physical residuals based on 
equation (10) is more effectively for accelerating 
convergence. 

With h and 2h denote fine and coarse meshes 
respectively, the basic multigrid process can be 
formulated in two meshes levels as follows:  

(1) Transferring solutions and residuals to the 
coarse grid, and calculating the forcing 
function, 
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(3) Interpolating from the coarse to the fine grid, 
Coarse grid correction:  
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Numerical Results 
 

Flows past RAE2822 airfoil 
The first test case analyzed is inviscid flows past 

RAE2822 airfoil. The freestream condition is 
M 0.01∞ = , 1.89α = ° , The computational domain 
extend 25 chord lengths away from the airfoil and the 
225×41 C-grid was created, as shown in figure 1. The 
flux difference boundary condition of equation (13) is 
used for far field. Figure 2A shows the pressure 
coefficient distributions computed with 
preconditioned system and the original system. The 
preconditioned result approach that of Puoti 11)  very 
well, but the result without preconditioning is of poor 
quality. Figure 2B shows the convergence histories 
with and without preconditioning, and preconditioning 
plus there-level full multigrid method. Without 
preconditioning the convergence is very slow, and the 

residual cannot reach a low level.  In contrast, with 
preconditioning convergence is accelerated. 
Furthermore, with both preconditioning and multigrid 
machine zero convergence is attained in much less 
iterations.  

Other test cases, M∞ = 0.1, 0.05, 0.001, behave 
essentially the same. At low Mach number the 
solutions of unmodified equations has lost significant 
accuracy while preconditioned solutions preserve 
accuracy. Also preconditioning can accelerate the 
convergence rate, and multigrid method is effective 
for preconditioned system. In addition, a case of 
M 0.73∞ = , 2.89α = °  is calculated with 
preconditioning. The results agree well with that of 
Pulliam10) and the shock wave is captured within three 
nodes. The convergence rate is also remained 
compared to unmodified system at compressible flows. 
This verifies that preconditioning does not degrade the 
accuracy of solutions and convergence characteristic 
for large Mach number flows. 

 
Figure 1  C-grid for the RAE2822 airfoil 

 
 

A. Pressure Coefficient B. Residual 

Figure 2  RAE2822 airfoil inviscid flows 
 
 

For the viscous flow past RAE2822 airfoil, the 
conditions are M 0.01∞ = , 1.89α = °  , 6Re 5.7 10= × .  
The 265×89 grid with clustered near the airfoil and 
Baldwin-Lomax turbulence model are employed in the 
viscous calculation. Unpreconditioned solutions are 
completely wrong, only preconditioned results are 
given. In figure 3A the comparison with results of 
Puoti11) is presented, showing the accuracy of the 
results obtained in the low-speed viscous flows. The 
convergence histories with and without there-level full 
multigrid is presented in figure 3B. Obviously, 
multigrid method accelerated the preconditioning 
calculations effectively.  
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A. Pressure coefficient B. Residual 

Figure 3  RAE2822 airfoil viscous flow 
 
 
Unsteady circular cylinder flows 

The viscous flow passing a circular cylinder is used 
for unsteady preconditioning test case. When the 
Reynolds number based on the freestream velocity 
and the cylinder diameter is larger than 40, vortex 
shed periodically from the circular cylinder. The 
computational domain extends 20 diameters around 
cylinder, and the 145×113 O-grid is used, as shown in 
figure 4. Three cases with different Reynolds number 
and Mach number given in Table 1 are carried out. 
For each period of vortex shedding, 100 physical time 
steps are setted. During each physical time step eight 
inner iterations implemented with four-level multigrid. 
In general, the non-dimensional frequency, namely 
Strouhal Number, t 0S fD/U= , is used to scale the 
vortex shedding frequency. The computed Strouhal 
number compared with experimental data12) and the 
numerical results of Buelow13) is shown in Table 1. It 
is found that the numerical results are the same with 
the experimental data except for the case of  
Re 1000=  where the Reynolds number beyond the 
experimental formulation. 

 
Figure 4  O-grid for the circular cylinder 

 
 

Table 1  Strouhal Number 

Case 
Present 

Result 
Experiment 

Buelow's 

Result 

M∞=0.02, Re=1000 0.235 0.208 0.242 

M∞=0.01, Re=100 0.167 0.167 / 

M∞=0.002,Re=100 0.167 0.167 / 

 
For case of M 0.01∞ =  and Re 100= , Figure 5 

shows the time-evolution of horizontal and vertical 
velocity at the point one diameter away on the 
centerline of circular cylinder in seven periods. The 
instantaneous streamlines computed during one 
shedding period is displayed in Figure 6. 

A. Horizontal velocity B. Vertical velocity 

Figure 5  Velocity evolution 
 
 

Figure 6  Instantaneous streamlines evolution 
within one shedding period 

 
 

Conclusion 
 

Through preconditioning technique time-marching 
algorithms used for compressible Navier–Stokes 
equations is modified to solve the low-speed flows, 
resulting in improvements on computational 
efficiency and solution accuracy. Hence the 
compressible solver could be used for incompressible 
calculation readily with minor modification. The time-
accurate unsteady solution is obtained by using 
combined method of dual-time step and 
preconditioning. The multigrid algorithms introduced 
to preconditioning speed up the convergence further. 
For several inviscid-viscous, steady-unsteady test 
cases satisfactory results are obtained, which proven 
wide applicability and reliability of the algorithms 
implemented in this paper. 
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