2008 = CHEHMY|EtE| EMECSES| FAEtais] =87 (2008.10.23-10.25)

Utilizing Particle Swarm Optimization into Multimodal Function Optimization

Minh-Trien Pham, Nyambayar Baatar, 244
A80ste Molastnt

Utilizing Particle Swarm Optimization into Multimodal Function Optimization

Minh-Trien Pham, Nyambayar Baatar, Chang Seop Koh
School of Electrical & Computer Engineering, Chungbuk National University

Abstract - There are some modified methods such
as K-means Clustering Particle Swarm Optimization
and Niching Particle Swarm Optimization based on
PSO which aim to locate all optima in multimodal
functions. K-means Clustering Particle Optimization
could locate all optima of functions with finite number
of optima. Niching Particle Swarm Optimization is
able to locate all of optima but high computing time.
Because of those disadvantages, we proposed a new
method that could locate all of optima with reasonal
time. We applied our method and others as well to
analytic functions. By comparing the outcomes, it is
shown that our method is significantly more effective
than the two others.

1. Introduction

The Particle Swarm Optimization (PSO) algorithm
was proposed by James Kennedy and Russell
Eberhart in 1995 [1]. It is known as the method
which has more advantages than Genetic Algorithm
and Evolution Strategy in unimodal optimization. One
of the most advantages is fast converged speed. That
is reason why nowadays there are many methods
based on PSO to locate multi solution of multimodal
functions.

K-means Clustering PSO (K-PSO) use standard
K-means clustering method to divide initial particles
into K groups. Each group will search local optimum
in sphere activity of the group. So, K-PSO could lo-
cate maximum K local minima [2].

Niching Particle Swarm Optimization (NPSO) is
combined Niching algorithm and PSO. Each initial
particle searches local optimum until it makes sure
that local optimum existence. Once the local existence
of a local optimum is found, the particle and its near-
est one create a group to exactly locate the local op-
tima [4]. By this method, it is able to locate all local
optima but the converged speed is slow.

This paper briefly reviews the methods based on
PSO. And then we proposed a new method named
Couple Particle Swarm Optimization to overcome the
disadvantages of K-PSO and NPSO.

2. Background

2.1 K-means Clustering Particle Optimization

This method is accomplished by applying a stand-
ard clustering algorithm and PSO. In this way each
cluster of particles tends to perform a local search in
the function domain and to locate different optima [2].

Clustering is performed after the swarm initializa-

tion and then repeated a fixed number of times during
the swarm simulation. Between two clustering appli-
cations the swarm or more precisely, the sub swarms
corresponding to the various clusters follows their
normal dynamics. In fact, the multiple applications of
the clustering algorithm are meant keep track of the
swarm dynamics: particles in different clusters at ear-
ly stages of the simulation can end up in the same
cluster as they move towards the same local optimum
or, at the contrary, a single cluster can be split in
two as some of its particles fly towards of different
optimum [2].

There are many kind of clustering, in this method
using the standard k-means algorithm to perform the
clustering of the particles, but with two adjustments.

1. For single clustering procedure the k-means al-

gorithm is repeated % times in order to reduce the
variance due to random centroid initialization. The
clustering with minimum sum-of-squared-error is
then chosen

2. After the clusters have been formed, the ones
with a number of particles higher than the average
are reduced. The exceeding particles are randomly re-
moved from them and reinitialized.

2.2 Niching Particle Swarm Optimization
NPSO was known as the method which can suc-

cessfully locate all maxima on a small set of test
functions during all simulation runs [4].

In NPSO, PSO was modified by the Guaranteed
Convergence Particle Swarm Optimization (GCPSO)
algorithm [6). This optimization was created because
of reason is when the particle’s position equal to par-

86

ticle’s local position and equal to group best position,
the velocity update only depends solely on previous
velocity term. When a particle approaches the global
best solution, its velocity property approaches zero,
which implies that eventually all particles will stop
moving. This behavior does not guarantee con-
vergence to a global best solution, or event a local
best, only to a best position found thus far [4].

n particles was generated, they was called main
swarm particles. At the first time, main swarm par-
ticles were trained using cognition only model. This
arrangement allows each particle to perform a local
search, After that, main swarm particles were updated
fitness, if a particle’s fitness showed very little
change over a small number of iterations of the
learning algorithm, a sub swarm is created with the
particle and its closest topology logical neighbor, For
each sub swarm, sub swarm particles were trained
using once iteration of the GCPSO algorithm. After
sub swarm particles update fitness, their swarm radi~-
us also was updated by calculate the maximum dis-
tance from sub swarm best particle with the furthest
particle in that sub swarm. During moving, if any
main warm particle located inside the sub swarm
which absorb that main swam particle, this main
swarm particle will become the sub swarm particle.
So at that time, number of main swarm particle will
be reduced and number particle in that sub swarm
will be increased. When sub swarms moving, in some
case they will tend toward the same local optimum.
In that case, they will be merged and became one
sub swarm. This process was repeated until stopping
conditions are met.

2.3 Couple Particle Swarm Optimization
In this section, the couple PSC algorithm can lo-

cate all optima for multimodal function is discussed.
There are n main particles were assigned uniformly.
All main particles aim to define the direction which
has local optima. After that a couple of particles will
locate the local optimum exactly. The scheme of cou-
ple PSO algorithm is shown in Figure 1.

After main particles are initialized, they will search
their local area by using PSO. In conventional PSO,
the velocity was combine by two modal, they were
named cognition only modal and social only modal. In
the equation (1), they are second and third item
respectively,

In PSO, with n main particles are generated in
search space of d-dimensions. For each particle ¢ its

velocity vector Yi is updated at iteration t according
to the equation:

1. Initialize main particles

2. Main particles local searching

3. Update fitness of each main swarm particle.
4. Create new particle couple.

5. For each couple:
5.1 Move using conventional PSO.
5.2 Update each particle's fitness.
5.3 Update couple radius
6. 1f possible, eliminate main particles and couples

7. Repeat from 2 until stopping conditions are met.

Figure 1

v+ D=0-v ({0 +¢n-{p,(O)-%,)
+o n - (g0 -x%,(0) o
In this model, velocity of particle only depends on
its own experience as the equation (2).
vt =@ v, () +e r-(p (- %) 2

where Xi, Vi, Pi describe position, velocity and par-
ticle best of particle’s i-th respectively.

Reason why in this step cognition only modal was
used but not conventional PSO or social only modal
because of locating local optimumn ability of this mo-
dal [3]. And the position was calculated by:

X+ D=x()+v,(t+1)i=1n (3)
After moved, main particles will be updated fitness. In
minimize problem, if the function value of particle’s
position at the current iteration is better than previous
one. The particle best position of the next iteration
will be that particle’s position.
P+ =x+]) i fx(+D) > fp()

=p{) if fx,(+D)) =< f(p,() (4)

where S is the function value of particle best
i-th at iteration t.

To create a new couple, a prediction method was
used. We can easy recognize that if the particle tends
toward local optimum the function value of this parti-
cle's position is smaller than previous. So, if any par-
ticle tends toward local optimum, a new couple is
created by generated a new particle beside its self,
both of them were combined a couple. With two par-
ticles, it is enough to apply conventional PSO.

Equation (5) shows the velocity update of each
particle in couple k-th.

Vit+D=0- Vi) +an (050 -5 (1)

+ey 1y (F (1) = x5 (1) ®)
and each particle updates position:
xie+p=xt@+via+1))

k k k
where X/ V(0 Py are position, velocity and par-
ticle best of j-th particle in couple k-th at iteration t.

..87_

And the best position in couple k-th at iteration ? is

k
€ (D). The particle best and couple best are updated
at next step.

P+ =X+ if FOGU+D) > £(ph(0)
=xj() if SGE+D) < S@50))
And the couple’s best will be the better particle’s
position in couple:
c"(t+1)=argminjf(pf.(t+l));j=l,2 (8)
Update couple radius:

R* = distance(xf , x});distance(x;, x,) = |, - x, | ©)

where R* is couple radius of k-th couple. Because
there are two particles in couple, so radius will be

distance between them and the center of k-th couple

. k
s €.

Eliminate particles:
distance(ct, x,) < R (10)
If any main particle moves inside couple area, or

distance between couple best ¢ and main particle %
is smaller than radius of k-th couple (10), this main
particle should be eliminated. Because if a new couple
is created by this main particle which will locate the
same local optimum with the k-th couple.

Eliminate couples:
distance(c*,¢") < (R* + R™) a1

If the distance between of any two couple best is
smaller than total radius of them as equation (11), the
couple has worse function value will be eliminated.
Eliminate method is applied to reduce number of
function call, that means it reduces computation time.

Stopping conditions: There are two stop conditions,
Maximum iteration equal 10,000 and all couple radii
smaller than epsilon after 10 iterations. Actually, epsi-
lon represents how accuracy of results. In this paper,

epsilon equal 10 was chosen. ¥ all of them are
reached, the program will stop.

3. Experimental Results

In this section, three methods were analyzed in 2D
design space. Our target is to locate all minima of the
following functions:

2
Fi(x)=0.01)((x +0.5)" ~30x - 20x,);
i=l
x €[-5.12;5.12]%;4optima 12

Fy(x) = (x} + %, 1)+ (%, + % = 7)* =200
x € [-5;,5]%; 4optima (13)

F(x)= ZN:{X,-Z - IOCOS(Zﬂx‘.)+|O}

i=l

x €[-1.3;1.3]";9optima (14)
N

F(x) =Y xsin(/x);x € [-80;60]";9optima 15
i=l

Fy(x)= —l-ﬁ:x.z -ﬁcos(ijﬂ
400057 4 \Wi

x €[-9.5;9.5)";17 optima (16)

With all method, number of maximum iteration in
stopping condition was set 10,000 and number of ini-
tial particles is 70. Those initial particles are gen-
erated by using Latin Hyper Design method and are
used by all three methods in all trials.

Comparison performance of three methods are
summarized in Table I, the percentage performance is
calculated by ratio number of successfully locate all
optima per number of trials.

The results show that NPSO and CPSO could lo-
cate all optima with all trials. K-PSO is performance
little worst than the others.

The reason why CPSO could locate all local opti-
ma with high performance is each particle has chance
locating its own local optimum.

Now we will concentrate to compare NPSO and
CPSO, table II showed average number of iteration of
all trials when these algorithms converged. It is
shown that converged speed of CPSO is faster than
NPSO. The reason is NPSO using cognition only mo-
dal until found local optimum while CPSO using con-
ventional PSO to found and locate exactly local
optimum. By the way, the converged speed of con-
ventional PSO is faster than cognition only modal is
proven by Kennedy [3].

Table III showed average number of function call.
Number of function call is the most importance pa-
rameter in optimization problem. It is especially in real
optimization problem. It concerns Finite Element
Method calculation. Table III showed that average
number of function call in CPSO is much smaller
than NPSO. Even number of iteration almost the
same, average number of function call in CPSO is
still smaller than NPSO. The first reason is CPSO
only has two particles in each couple. And the sec-
ond, the number of couple is reduced while moving if
they move toward the same local optimum.

4. Conclusion

In this paper, CPSO was compared with K-PSO
and NPSO. As the results, CPSO could locate all local
optima as well as NPSO and performance better than
K-PSO in complicated analysis functions. Furthermore,

88.

when comparing converged speed and number of
function call, it is shown that converged speed of
CPSO is faster than NPSO. And the most importance
parameter is number of function call table I that
CPSO used smaller number of calling function with
NPSO. It is mean that CPSO save more computing
time than NPSO. These results had importance signi-
fication in real optimization problems.

Future research will apply CPSO intc higher di-
mension multimodal functions and real multimodal op-
timization problems.

5. References

{11 1. Kennedy and R. C. Eberhart, "Particle swarm
aptimization,” in Proc. IEEE International Conference on
Neural Networks, vol. 4, 1995, pp. 1942-1948,

2] Alessandro Passaro and Antonina Starita,
"Clustering particles for multimodal function opti-
mization”, Giorata di studio Italiana Sul Caicolo
Eloluzionistico, 2006.

{31 J. Kennedy, "The particle swarm: social adaptation
of knowledge,” in Proceedings of IEEE Congress on
Evolutionary Computation (CEC '97), pp. 303308,
Indianapolis, Ind, USA, April 1997.

[4] Brits, R., Engelbrecht, A. P, van den Bergh, F.: A
Niching Particle Swarm Optimizer. Conference on
Simulated Evolution and Learning, Singapore (2002)

5] Minh-Trien Pham, Nyambayar Baatar, Chang Seop
Koh, 7"Couple Particle Swarm Optimization for
Multimodal Functions”, Proceedings of the KIEE IMECS
Annual Spring Conference 2008, p 44-46, 2008.

(6] F van den Bergh, An Analysis of Particle Swarm
Optimizers, PhD Thesis, Department of Computer
Science, University of Pretoria, Pretoria, South Africa,
2002,

TABLE I
% experiments locating all optima
Function K-PS0O NP3O CPSO
Fx) 100% 100% 100%
Fytx) 1009 100% 100%6
Fix) 83% 100% 100%
F(x) 0% 100% 100%
Fix) 14% 100% 100%
TABLE 1
Average number of iteration when algorithm was converged
Function NP3O CPSO
F(x) 1.833.57 75045
E® 1,647.88 770.79
Rz} 2.583.34 954.28
=) 2,862.88 1,18837
Fy(x) 3,224.49 1,006.34

89

TABLE I
Average number of function call when algorithm was converged
Function NPSO CPS0
R 128,349.90 25,812.24
Fx) 115,351.60 25435.78
F(x) 208,833.80 35,763.16
F(x) 200,401.60 45,245.28
Fyx) 225,714.30 58,673.34

Figure 5. Function Fy(x)

Figure 6. Function F5(x)

